1) Product Riemannnian manifold
直积黎曼流形
2) Riemannian manifolds
黎曼流形
1.
Delaunay triangulation and Voronoi diagrams for Riemannian manifolds
黎曼流形的Delaunay三角化和Voronoi图
2.
The studies of differential manifolds and their applications are motivated to the active fields with applications of Riemanian manifolds and Sub-Riemannian manifolds in Control Theory,Dynamics Theory,Gauge Fields,etc.
基于黎曼流形及次黎曼流形在控制论、动力系统、规范场论等领域中的广泛应用的事实,本文拟对作为研究生课程的《微分流形及其应用》给出研习该课程的一般方法和思路。
3.
Estimations of the moments of the hitting time by Brownian motions on general Riemannian manifolds are also obtained.
估计了一般黎曼流形上的布朗运动关于球面击中时的各阶矩。
3) Riemann manifold
黎曼流形
1.
Nonlinear control systems on the riemann manifold;
黎曼流形上的非线性控制系统
2.
In this article,taking smooth vector field on manilotd as state usctor field of dynamic system,we establishes differential dynamic systcm on the Riemann manifold and discuss the existenceand uuiqueness of solution of ynamic system,an effect of geometrical structure on structure stability and sinplified of dynamic system\
本文取流形上光滑的切向量场为动力系统的状态向量场 ,建立了黎曼流形上的微分动力系统 ,讨论了动力系统解的存在唯一性 ,几何结构对结构稳定性的影响 ,以及动力系统的约化等问
3.
Let M and M′ be two Riemann manifolds.
对于黎曼流形M,M′,证明了:如果对3个独立的p值有specp(M)=specp(M′),那么∫Mr2*1=∫M′r′2*1,∫M‖Ric‖2*1=∫M′‖Ric′‖2*1,∫M‖Riem‖2*1=∫M′‖Riem′‖2*1。
4) Riemannian manifold
黎曼流形
1.
Fritz John necessary optimality condition on Riemannian manifolds;
黎曼流形上Fritz John必要最优性条件
2.
Pseudo-Umbilical Submanifolds in a Locally Symmetric Conformally Flat Riemannian Manifold;
局部对称共形平坦黎曼流形中的伪脐点子流形
3.
Intrinsic rigidity on minimal submanifolds in a Locally symmetric conformally flat Riemannian manifold;
局部对称共形平坦黎曼流形上极小子流形的内蕴刚性积分不等式
5) Pseudo Riemannian manifold
伪黎曼流形
1.
Let N n+p p be a locally symmetric, complete and connected pseudo Riemannian manifold, whose sectional curvature K N satisties c 1≤K N≤c 2.
:Nn+ pp 为 n+ p维局部对称的完备连通伪黎曼流形 ,它的截面曲率 KN 满足 c1 ≤ KN≤ c2 。
2.
For a given covariant symmetric tensor field of order 2 on a pseudo Riemannian manifold,the author constructed a C ∞ locally orthonormal frame field such that with respect to the frame field the component matrix of the tensor field has of canonical form under some assumptions.
对伪黎曼流形上的2-阶共变对称张量场,如果它的Jordan指标在一个邻域上是常数,我们能构造这个邻域上的局部正交光滑标架场,使这个张量场关于构造的标架场的分量矩阵有标准形式。
6) sub-Riemannian manifold
次黎曼流形
1.
In this paper we study the geodesics in sub-Riemannian manifold (M,D,g) ,where M(?)R~3=R_x~2×R_t is a three dimentional smooth manifold , D is a two dimentional smooth horizontal distribution generated by vector fieldsinteger, and g is a positive definite metric defined on D .
本文研究了次黎曼流形(M,D,g)上的测地线,这里M(?)R~3=R_x~2×R_t是3维光滑流形,D是由切向量场Y_1,Y_2生成的2维光滑水平分布,其中(?)k≥0是整数,g是定义在D上的正定度量。
2.
In this paper, the geodesics in a class of sub-Riemannian manifolds-Carnot groups are studied.
本文主要研究一类常见的次黎曼流形Carnot群上的测地线。
补充资料:黎司直
1.界尺的别名。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条