1) strictly positive solution
严格正解
1.
This paper discusses the existence of strictly positive solution of the spread single group Kolmogorov system,the uniquness,and the golbal asymptotic stability of the solution.
讨论了推广的单种群 Kolmogorov系统的严格正解的存在性 ,惟一性及全局渐近稳定性 ,得到了比通常 Kolmogorov系统更一般的结果 ,进一步在周期与概周期的情形下 ,得到了正周期解与正概周期解的存在
2) strictly positive realness
严格正实
1.
The sufficient condition for the mixed μ strictly positive realness synthesis is given in the time domain.
根据有理函数矩阵严格正实的概念,采用一系列等价变换,推导出易于混合μ综合的状态空间实现。
2.
This paper gives the new results of strictly positive realness of a fixed plant firstly,proves the new results if the results of Chapellat Theorem.
首先给出了确定对象严格正实的新的充要条件,证明了新的结果完全等价于Chapellate的结果,在此基础上,推出了区间系统严格正实的顶点结果,使得区间系统严格正实问题转化为有限个对象严格正实问题,最后,给出了区间Lue′e系统的鲁棒Popov准则的顶点结果。
3) strictly positive real
严格正实
1.
Based on the conception of quadratic extended strictly positive real system, necessary and sufficient conditions for the closed-loop system to be quadratic extended strictly positive real were established.
讨论了系数矩阵具有有界范数不确定性系统的输出反馈鲁棒严格正实设计问题。
4) strictly orthogonal
严格正交
5) strictly copositive
严格偕正
1.
Based on these know results we will give necessary and sufficient conditions for symmetric matrices of order n≤5 to be strictly copositive, and present three algorithms which can determine efficiently whether a given symmetric matrix of order 3,4 or 5 is strictly copositive or copositive or not copositive.
本文在此基础上,进一步给出了它们严格偕正的条件,并提出了三个算法,它们能够用来有效地判定3,4,5阶对称矩阵严格偕正、偕正或非偕正。
6) rigorous solution
严格解
1.
The rigorous solutions of nonlinear Schrdinger equation,which models the Bose-Einstein condensate,are solved within the framework of the quantum phase-space representation.
在该量子相空间表象框架下,获得了用于模拟Bose-Einstein凝聚态的非线性Schr dinger方程的严格解。
2.
Within the framework of the quantum phase-space representation established by Torres-Vega and Frederick,the rigorous solutions of stationary Schro¨dinger equation for one-dimensional harmonic oscillator are solved with the methods of matrix mechanics and wave mechanics respectively.
dinger方程的严格解。
3.
The rigorous solutions of stationary Schrdinger equation for one-dimensional hydrogen atom are obtained.
探讨了Torres-Vega和Frederick量子相空间表象中的波动力学方法,以及相空间表象与位移表象和动量表象之间的“类Fourier”投影变换;获得了一维氢原子体系定态Schrdinger方程在相空间表象中的严格解;揭示了相空间中波函数的不唯一性。
补充资料:正解
【正解】
(术语)正觉之略名也。正悟解法性也。唯识论一曰:“为于二空有迷谬者生正解故。”同述记一本曰:“言正解者,正觉异号。”
(术语)正觉之略名也。正悟解法性也。唯识论一曰:“为于二空有迷谬者生正解故。”同述记一本曰:“言正解者,正觉异号。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条