1) weakly coupled systems of parabolic equations
弱耦合抛物组
2) weakly coupled systems of second-order
二阶拟线性弱耦合抛物组
1.
In this paper,the maximum principles for weakly coupled systems of second- order semilinear parabolic equations are proved,and the gradient estimates of the solutions are obtained using the princi- ples.
文中证明了二阶拟线性弱耦合抛物组的最大值原理 ,利用这些最大值原理 ,获得了其解的梯度估
3) parablic-hyperbolic system
抛物-双曲耦合组
4) coupled parabolic system
耦合抛物方程组
1.
The homogenization of a coupled parabolic system is discussed carefully and the homogenization results are obtained.
详细讨论了多孔介质中一类耦合抛物方程组的均匀化过程,并给出了均匀化结果。
2.
This paper deals with coupled parabolic system ui=vp u,v,in (0,T) with nonlinear boundary conditions , where is a bounded domain with smooth boundary, p,q>0 and a,B>0 are constants.
考虑带非线性边界条件αu/αn=u~α,αu/αn=v~β,(x,t)∈αΩ×(0,T)的耦合抛物方程组u_t=v~p△u,v_t=u~q△v,(x,t)∈Ω×(0,T),其中ΩR~N为一具有光滑边界的有界区域,p,q>0和α,β≥0为常数。
5) elliptic parablic coupled system
椭圆抛物耦合方程组
6) Hyperbolic-parabolic coupled systems
双曲抛物耦合方程组
补充资料:弱耦合超导体(weak-couplingsuperconductors)
弱耦合超导体(weak-couplingsuperconductors)
在电-声子机制的BCS理论中,满足条件`N(0)V\lt\lt1`的超导体性质的称弱耦合超导体(见“BCS理论”),它们在0K温度时的能隙2Δ(0)与kBTc的比值
$\frac{2\Delta(0)}{k_BT_c}\approx3.53$
是一个普适常数,与多数超导元素实验结果基本符合和符合甚好。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条