1) Lagrange stability(L.S)
拉格朗日稳定(L.S)
3) Lagrange theorem
拉格朗日定理
1.
By means of analyzing a variety of references to auxiliary functions when prove Lagrange theorem and researching on typical questions, this paper intends to find the internal rules of constructing auxiliary functions.
通过分析各种教科书对拉格朗日定理证明中引用辅助函数的和典型题目的研究,试图找出构造辅助函数的内在规律。
2.
Then,parameters of object function is evaluated by Lagrange theorem,and clustering algorithm based on intuitionistic fuzzy etropy is presented.
利用拉格朗日定理推导了目标函数参数求解,并给出了基于直觉模糊熵的聚类算法。
4) lagrangian
[lə'ɡrændʒiən]
拉格朗日
1.
Free surface fluid flow analysis by Lagrangian finite element method;
带自由面流体运动的拉格朗日有限元分析
2.
Analysis of Soil Nailing with Lagrangian
运用拉格朗日法分析基坑开挖与土钉支护
3.
A new model was created by combination of a chemical model for the gas phase chemistry of the atmospheric boundary layer with a lagrangian model for the long-range transport of air pollutants.
建立了一个将空气污染物远距离输送和大气边界层内气相化学反应模式相结合的拉格朗日模式,并应用于华南的酸雨研究。
5) Lagrange
[英][lə'ɡreidʒ; ,la'ɡraʒ] [美][lə'ɡrɑndʒ, lɑ'ɡrɑŋʒ]
拉格朗日
1.
The Implement of Parallel Lagrange Algorithm Based on MPI
基于MPI并行环境下拉格朗日插值的求解
2.
By using Lagrange formulations,the solution of transient in nonlinear serial RLC circuits was obtained and analyzed to find their some general features.
应用拉格朗日方程对非线性RLC串联电路的暂态过程进行了求解,对所得到的解析解进行了分析,得到了非线性RLC电路的一些普遍特征。
3.
Besides,we will give a new proof to the LaGrange s theorem.
本文对微分中值定理的传统教学提出了改革的方法 ,并对常规所设的辅助函数进行了综合比较 ,给出了各种辅助函数的几何模型 ;另外 ,还另辟溪径 ,给出一个拉格朗日定理的独立证法。
6) Lagrange mean value theorem
拉格朗日中值定理
1.
On the basis of these theories,Rolle mean value theorem,Lagrange mean value theorem and Cauchy mean value theorem are proved by constructing nested interval.
在此基础上通过构造区间套依次证明了罗尔中值定理、拉格朗日中值定理和柯西中值定理。
2.
This paper gives the new method to prove the Cauchy Mean Value Theorem ,which also may be deduced from the Lagrange Mean Value Theorem.
给出柯西中值定理的一个新的证法, 说明柯西中值定理也可由拉格朗日中值定理导出。
3.
Basing on Lagrange mean value theorem of a circular function and Cauchy\'s mean value theorem"value points"Quantitative characterization of the asymptotic,using Taylor\'s formula,"value point\'s"Quantitative characterization of the asymptotic about Lagrange mean value and Cauchy\'s Mean value of a binary function are an obtained.
在一元函数拉格朗日中值定理和柯西中值定理"中值点"渐近性的定量刻画的基础上,利用泰勒公式给出二元函数拉格朗日中值定理和柯西中值定理"中值点"渐近性的一个定量刻画。
补充资料:第二类拉格朗日方程
见拉格朗日方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条