1) The second-order linear recurrence formulas
二阶线性递推公式
2) Linear Recurrence Formula
线性递推公式
1.
Solutions to General Term of Progression by Means of Linear Recurrence Formula
由线性递推公式求数列的通项
4) linear recurrence formula
线性递推式
1.
By using Frobenius matrix, this paper presents the common solution in another form to linear recurrence formula with constant coefficients.
本文利用Frobenius矩阵的自乘特性给出常系数线性递推式一般解的一种形
5) linear recurrence
线性递推式
1.
In this paper we consider the following class of linear recurrence with variable coefficients with two indicesu i,j =f(i,j)u i-1,j-1 +g(i,j)u i-q,j-q +h(i,j), u i,0 =c i,0 ,u 0,j =c 0,j (i,j=0,1,…),u i,j =0(i<0 or j<0),where i,j=1,2,…,q≥2,f(i,j),g(i,j) and h(i,j) (i,j≥1) are variable numbers,c i,0 and c 0,j (i,j=0,1,…) are vrbitrary constants.
本文给出了两个指标的非常系数的线性递推式的显式解 。
2.
It is very difficult to get a clear formula solution of general linear recurrence,even for the case of homogeneous recurrence of constantcoefficients with one indicds.
根据代数方程的求解原理 ,利用传统的数学归纳方法 ,通过严密的推导得到了一类两个指标的非常系数线性递推式的显式解 ,从而为解决与之相关的定解问题 ,提供了一个统一、具体的计算公式 。
6) Fractional linear recurrence formula
分式线性递推式
补充资料:递推公式
递推公式
recurrent formula
递推公式〔recul侧翻t fomll山或犯currence fonntlla;pe叮ppeltTH朋加pMy几a」 同递推关系(肥cluTence rela石on)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条