说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Moors-Penrose广义解
1)  Moore-Penrose generalized solution
Moors-Penrose广义解
2)  Moors-Penrose Generalized Inverse
Moors-Penrose广义逆
3)  Moore-Penrose generalized inverse solution
Moore-Penrose广义逆解
4)  Moore-Penrose inverse
Moors-Penrose逆
1.
This paper shows the form of Moore-Penrose inverse of a morphism withepic-monic factorization and expresses the Moore-Penrose inverse of a morphism byits {1,3} inverse and {1,4 } inverse.
给出了有满单分解的态射的Moore-Penrose逆的结构,并且对一般态射给出了由它的{1,3}逆和{1,4}逆表出的Moors-Penrose
5)  Moore-Penrose inverse
Moore-Penrose广义逆
1.
Their contacts between Idempotent-Hermite Matrix and idempotent matrix,Hermite-matrix,normal matrix,positive semi-definite matrix are obtained;and relation between Idempotent-Hermite Matrix and orthogonal projector,Moore-Penrose inverse is also discussed.
给出了幂等Hermite矩阵的概念,研究了幂等Hermite矩阵的一些性质,取得了幂等Hermite矩阵与等幂矩阵、Hermite矩阵、正规矩阵、半正定矩阵的一些联系,讨论了幂等Hermite矩阵与正交投影算子和Moore-Penrose广义逆的关系。
2.
With the introduction of center Lipschitz condition and Moore-Penrose inverse on Riemannian manifold, the criterion of convergence of simple Newton s iteration for the singular vector field is given, that is, the sequence generated by simple Newton s iteration with initial point p_0 converges to a zero of the singular vector field.
通过在黎曼流形上引入中心Lipschitz条件与Moore-Penrose广义逆,给出了为求黎曼流形上奇异向量场的零点的简单牛顿迭代法的收敛判别条件。
3.
This paper dealt with parallel computation of the Moore-Penrose inverse of a bidiagonal matrix.
研究用一种叫分而治之的算法以计算上双对角阵的Moore-Penrose广义逆。
6)  Moore-Penrose generalized inverse
Moore-Penrose广义逆
1.
The method how to get the Moore-Penrose generalized inverse is also worked out.
提出了广义实幂等矩阵的概念,研究了它的性质,并给出了其Moore-Penrose广义逆的求法。
2.
By using Moore-Penrose generalized inverse and the Kronecker product of matrices, we derive the expression of the least squares symmetric solution of the matrix equation AXB + CYD = E with the least norm.
对于任意给定的矩阵A∈Rm×n,B∈Rn×s,C∈Rm×k,D∈Rk×s,E∈Rm×s,本文利用矩阵的Kmnecker积和Moore-Penrose广义逆,研究矩阵方程AXB+CYD=E的对称极小范数最小二乘解,得到了解的表达式。
3.
Chapter two deals with the perturbation problem of Moore-Penrose generalized inverse of densely defined closed linear operator in Hilbert space:The theory of generalized inverse has numerous applications in mathematic fields such as numerical linear algebra, numerical analysis, optimization, control theory, mathematical statistics, differential equations.
本文主要讨论了Banach空间中一阶脉冲积分微分方程初值问题整体解的存在性和稠定闭算子Moore-Penrose广义逆的稳定性问题,共分为两章。
补充资料:广义解


广义解
generalized solution

  广义解〔笋.阁助目吸自丘旧;丽浦叫eH毗衅ulel..] 微分(伪微分)方程古典解概念的一种推广.数学物理中的许多问题导致此概念的产生,在这些问题中要求把非足够次可微的函数,甚至无处可微的函数,以及更一般的对象诸如广义函数、超函数等等看作为微分方程的解.这样,广义解的概念即与广义导数(罗讹讯】i到山幼垅币记)和广义函教(罗淤区血目细Ic-由n)的概念紧密相关.广义解的概念可追溯到L .Eu-打(fg】). 微分方程 乙(、,D)(。)二艺a:D·u(x)=f(x),(1) l区{落mf任。,(O),a:6C的(O),在类D’(口)中的一个广义解(脚e饭血司501以沁n)是在口中满足方程(l)的D‘(O)中的任一广义函数u,即对于任意检验函数甲〔D(0),等式(u,f伞)=(f,叻成立,其中L*是琢脚列笋意义下L的伴随算子: L’,一,,蒸二‘一,,’“‘D“‘a。,,· 微分方程边值问题的广义解必须在某种适当的广义下(在气(日0)或刀润0)中,等等)满足边界条件,例如,当r~l一0时,在LZ({51=l)中u(rs)~u(s):或者,当t~+0时,在D‘中u(x,t)~“。(x). 对于微分方程的边值问题,在用变分方法求解时,在应用差分方法时,以及在应用R川d曰法(Founern坦山记)、极限吸收原理(h川tah刃rptionPrirldP】e)极限振幅原理(】耐山艰一助叩11橄记eP们盯aP怡)、拟粘性法等等作为古典解的弱极限时产生了广义解. 例.1)方程扩u’=O在D’(R)类中的通解由 一刀(工)生cl士几叭x)十C。歼工)-给出,其中0是Hea油北七函数:x)0时,0(x)=1;x<0时,口(x)二0;占是Din沈d日恤函数(delta-丘mCt沁n);此外,在这里以及下文中的C:,q,…是任意常数. 2)方程护杯十u二O在C伪(R)类中只有一个解,即以一x)e’/x;而在超函数类中,它的通解由公式u(x)=qe,“x一‘0)+Cse’/(x+‘0)+C6a(一x)e’‘X给出. 3)波动方程u,,=aZux:在C(R,)类中的通解由公式u(x,r)=f(x+at)+g(x一a艺)给出,这里f和g是C(R)类中的任意函数. 4)U户眼方程(Upl暇闪送币。n)△。=0在D’(O)类中的每个解u在O中是(实)解析的. 5)热传导方程(h乏t闪uat沁n)。:=少△u在D’中的每个解u是无穷次可微的. 6)每个具有常系数的微分算子L二0都有了类的(缓增)基本解(几叹纽mm因阳lu石on). 7)令L(D)举0是任一常系数微分算子.如果O是一个有界区域,那么对于LZ(O)中任意的f,方程L(D)u=f有广义解u在LZ(O)中. 8)边值问题 △u=f,ul。口=0,feLZ(O)(2)在Co励。类w;”(0)中的广义解u作为求二次泛函 ‘(·卜)(,睿·:‘·2帅‘·在w八o)类中的极小的经典变分问题的解而得到.对于LZ(0)中任意的f,这个变分问题的解在w盗”(0)类中存在并唯一这样,对于所有的fe LZ(O),边值问题(2)的广义解给出了算子△的一个自伴扩张(刚扩张,或Fri改州chs扩张).边值问题(2)的广义解及其所有一阶导数在O中是正则的(即,是O中的局部可积函数);一般而言,它的二阶导数是奇异广义函数.【补注】当解属于D‘(O)时边界值和边界条件的概念的推广需要特别的说明,例如,见L .H6m岌闭阮厂nra蒯声15 ofljl长arpart认ldi晚m吐园。详份tors,第3卷,附录B中的讨论. 有关(拟)粘性法,亦见粘性解(v‘。招ity solu.tio璐).陆柱家译
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条