1) the CM method for generating elliptic curves
CM方法生成椭圆曲线
2) quadratic sieve algorithm
椭圆曲线法
3) elliptic grid generation
椭圆型网格生成方法
1.
After redistributing its surface, three-dimensional body-fitted grid is generated by solving elliptic partial differential equations, namely elliptic grid generation.
网格生成技术是CFD中极为关键的问题之一,偏微分数值网格生成技术是目前应用和研究较多的网格生成方法,其中应用较多的是椭圆型网格生成方法。
4) elliptic curve equation
椭圆曲线方程
6) elliptic curve encipher
椭圆曲线加密法
补充资料:椭圆曲线
椭圆曲线
effiptic curve
一上工丛上星兰一 l一(叮刊一A)Q一‘+叮’一,’对于某个虚二次域(或Q)里的模为而的任何代数整数“,可以找到k上椭圆曲线X,使得X(k)的阶是q+l一仁+万). 设k是p进数域Q,或它的有限代数扩张,B是k的整数环,x是k上椭圆曲线,且设X(k)非空.群结构使得X(k)成为一维交换紧p进价群(Liegro叩,P-目止).群X(k)是We.一O后侧以群(V几n一C帕telet脚即)从℃(k,X)的noHlp~对偶.如果j(X)哄B,则X是一条1妞忱曲线(见【1],[5」),且与C的情形类似,存在X(k)的典范单值化 设X是Q上椭圆曲线,且X(Q)非空,则X双正则同构于曲线(l),其中“,b6Z,在所有具有整系数a和b的、与X同构的形如(l)的曲线中,可以选取一条使得其判别式△的绝对值最小.X的前导子N与L函数L(X,s)被定义为局部因子的形式积: N一n几,L(X,s)一flL,(X,s),(2)这里p取遍所有素数(见[l],[5],[13])·这里几是夕的某个幂,乌(X,“)是复变量,的亚纯函数,它在“=1处既无零点亦无极点.为了确定局部因子,人们考虑X的模p约化(p尹2,3),这是剩余类域z/(P)上的一条平面射影曲线戈,在仿射坐标系内由方程 夕,=x’+万x+万(万三a 1llcKI夕,石二石】班记夕)给出·设A,是戈上的z/(P)点的个数·如果p不能整除△,则苏是z/(力上的椭圆曲线,可令 几一’,“,(x,’)一下石万石不不甲下如果p整除△,则多项式护干万义十石有重根,可令 :。(戈、)一下丫男-,了。一,,或, 一一一l一(p+l一A,)p一’(根据它是三重或二重根而定).乘积(2)在右半平面Res>3/2内收敛.人们猜想L(X,s)可扩张为整个复平面的亚纯函数,并且函数 七x(s)=N‘/,(2二)一‘r(s)L(X,s)(这里r(s)是r函数(罗m仃以丘川ct幻n))满足函数方程七x(s)二w七x(2一s),w=士l(见【5」,【3】).对于具有复乘法的椭圆曲线,这个猜想已被证明. 群X(Q)同构于FOX(Q),,这里X(Q)。是有限A忱1群,F是有某有限秩r的自由Abel群.X(Q),同构于以下15个群之一(见【111):Z/mZ,1(爪毛10或。=12,以及(Z/22)x(Z/vZ),1簇v延4.数r称为Q上椭圆曲线的秩(mnk ofthe翻pticc~)或称为它的Q秩(Q一mnk).秩)12的Q上椭圆曲线的例子已经知道.人们猜想(见111,【131)Q上具有任意大小的秩的椭圆曲线都存在. 在研究x(Q)时使用T Ta让高石:x(Q)~R+,这是X(Q)上的非负定二次型(见【l」,【3},【8」,亦见高(口砷抽皿旧几何中的)(址ight,in肠ophantine罗-。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条