1) Laplace and Fourier transform
Laplace和Fourier变换
2) Fourier-Laplace Transform
Fourier-Laplace变换
1.
This paper discusses the ω-ultra-differential function space,,by using Fourier-Laplace Transform,and gives an equivalence theorem on it.
利用Fourier-Laplace变换对Roumieu型ω-超可微函数空间D(ω)(RN)进行了讨论,并给出了其上的一个等价性定理。
2.
The convolution operations in ω-ultradifferentiable function spaces of Beuling tape ε(ω)(Ω) are discussed by Fourier-laplace transform,and it is obtained that the space D(ω) is the multiplier space of ε(ω)(Ω) in the sence of convolution.
文章利用Fourier-laplace变换对Beurling型ω-超可微函数空间(εω)(Ω)的性质进行了讨论,证明了在卷积意义下,D(ω)(RN)为(εω)(RN)的乘子空间。
3) Laplace-Fourier transform
Laplace-Fourier变换
1.
From the governing equations of a saturated poroelastic soil,the relationship of basic variables for a point of a soil layer was established at between the ground surface (z=0) and the depth z in the Laplace-Fourier transformed domain.
从饱和多孔弹性土体的控制方程出发,建立了在Laplace-Fourier变换域内,土层中地基表面(z=0)和深度z处基本变量之间的关系。
2.
Sequentially,the solutions to the plane strain consolidation can be acquired by using the transfer matrix method,the continuity conditions and boundary conditions of the multi-layered soil,and the inversion of the Laplace-Fourier transform.
从平面应变Biot固结的控制方程出发,对时间t,坐标z和x进行Laplace和Fourier变换,建立了地基表面(z=0)和任意深度z处的基本量在Laplace-Fourier变换域内的传递矩阵关系。
4) Laplace-Fourier mixed transforms
Laplace-Fourier联合变换
1.
The solutions of consolidation displacement of subgrade with sand drains are derived using Laplace-Fourier mixed transforms and transfer matrix method.
由Laplace-Fourier联合变换和传播矩阵技术给出砂井路基固结变形分析,所得的计算结果与现场实测结果相符。
5) Fourier-Laplace summability
Fourier-Laplace求和
6) Laplace transform and Hankel transform
Laplace和Hankel积分变换
补充资料:Laplace变换
Laplace变换
Laplace transform
Ij户沈变换[u内倪加份七丽;几叨月aCa即eO6Pa30-aan“e] 广义地它是形如 F(,)一丁f(:)。一d:(1) L的LaplaCe积分(LaPhce inte脚1),这里积分是在复z平面的某一围道L上进行的,它在定义在L上的函数f(:)和复变数p=叮+i;的解析函数F(p)之间建立了一个对应关系.很多形如(l)式的积分由P,Uplace作了考察(见汇11). 狭义地,Up玩。变换理解为单侧助p廊e变换(one一sid刻UPlaceu艺nsfonn) F‘p,一L If,‘,,一丁f(亡)。一d。,‘2, 0这样称呼是为了区别于双侧LaPlace变换(t场。一sjded肠p俪etra璐form) F(,)一L of](,)一丁f(:)。一d:·(,)LaP玩。变换是一类特殊的积分变换(泊魄刘trans-form);(2)式或(3)式的变换与F以州er变换(Fo~tl习J侣允加)有紧密联系.双侧Lap玩e变换(3)可以看成函数f(Oe一“的凡~变换,而单侧Lap阮e变换(2)可以看成当O
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条