1) Laplace inverse transformation
Laplace逆变换
1.
Solution of detention-including Laplace inverse transformation;
含有延迟的Laplace逆变换的求解
2.
By using Laplace inverse transformation method, a two-dimensional time-dependent partial differ-ential equation for crystal growth is analyzed and the solution is obtained.
对定常速度下二维非稳态晶体生长的数学模型进行了分析,证明了解的唯一性,并运用Laplace逆变换法对该定解问题进行求解,最后给出了一个具体的例子。
3.
Based on the generation theorem in terms of the Laplace transformation and the properties of exponentially bounded integrated C-semigroups,the Laplace inverse transformation for exponentially bounded integrated C-semigroups is deduced.
以积分C半群生成定理的Laplace刻划为基础,利用积分半群的性质,推导出指数有界积分半群的一种表达形式——Laplace逆变换形式。
2) numerical inversion of Laplace transforms
数值Laplace逆变换
3) Laplace transformation and its converse transformation
Laplace变换和数值逆变换
4) Laplace transformation
Laplace变换
1.
Laplace transformation and simulation for Stirling cryocooler s vibration maths model;
斯特林制冷机振动数学模型的Laplace变换及仿真
2.
Solving the vibration problem of elastic rod with concentrated mass on one end by Laplace transformation;
再论用Laplace变换法求解端点系有集中质量的弹性杆的振动问题
3.
Solving the vibration problem of an elastic rod with concentrated mass on one end by Laplace transformation;
用Laplace变换法求解端点系有集中质量的弹性杆的振动问题
5) Laplace transform
Laplace变换
1.
Solution of one type of infinite integral by Laplace transform;
用Laplace变换求一类无穷限积分
2.
Solution of one-dimensional consolidation for double-layered ground by Laplace transform;
Laplace变换解双层地基固结问题
3.
Dynamic response of structures calculated by combining finite element with Laplace transform;
Laplace变换—有限元法计算结构动响应
6) Laplace-stieltjes transformation
Laplace-stieltjes变换
1.
First, the author turns equation into standard form* use Fourier method tomake the solution of question expand by eigenfunction- use Laplace-stieltjes transformation and theme.
本研究首先将方程化为标准形,利用Fourier方法将问题的解按特征函数展开,并利用Laplace-stieltjes变换和等人应用的方法。
2.
In this paper, the authors investigate the growth of entire functions of infinite order represented by Laplace-Stieltjes transformation; the authors obtain two necessary and sufficient conditions and extend some results of Dirichlet series in the whole plane.
该文系统地研究了在全平面上收敛的无限级Laplace-Stieltjes变换的增长性,得到了两个充要条件,推广了全平面上Dirichlet级数的有关结果。
补充资料:Radon变换和逆Radon变换
Radon变换和逆Radon变换
X线物理学术语。CT重建图像成像的主要理论依据之一。1917年澳大利亚数学家Radon首先论证了通过物体某一平面的投影重建物体该平面两维空间分布的公式。他的公式要求获得沿该平面所有可能的直线的全部投影(无限集合)。所获得的投影集称为Radon变换。由Radon变换进行重建图像的操作则称为逆Radon变换。Radon变换和逆Radon变换对CT成像的意义在于,它从数学原理上证实了通过物体某一断层层面“沿直线衰减分布的投影”重建该层面单位体积,即体素的线性衰减系数两维空间分布的可能性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条