1) Graded Hochschild homology
分次Hochschild同调
2) Hochschild cohomology
Hochschild上同调
1.
According to the properties of path coalgebras,using the definition and methods of calculating Hochschild cohomology given by Doi Y,as well as the researching methods of Hochschild cohomology in algebras,we study the coradicals of path coalgebras,the Hochschild cohomology of path coalgebras and quotient coalgebras of path coalgebras.
根据路余代数的性质,利用Hochschild上同调的定义与计算方法,借鉴代数中的Hochschild上同调的研究方法,研究了路余代数的余根、路余代数及路余代数的商余代数的Hochschild上同调。
3) Hochschild homology group
Hochschild同调群
1.
Based the minimal projective bimodular resolution constructed by Buchweitz et al, the dimensions of all Hochschild homology groups of Aq are calculated explicitly.
设Aq=k/(x2,xy+qyx,y2)是含有两个变量的广义外代数,基于Buch- weitz等人构造的极小投射双模解,广义外代数的各阶Hochschild同调群的维数被清晰地计算。
4) Hochschild homology
Hochschild同调
1.
For a path algebra A = kQ with Q an arbitrary quiver, consider the Hochschild homology groups Hn(A) and the homology groups TornAe(A, A), where Ae is the enveloping algebra of A.
对任意箭图Q,我们研究路代数A=kQ的Hochschild同调群H_n(A)和同调群Tor_n~(A~E)(A,A),其中A~e是代数A的包络代数。
2.
In this paper, Firstly, we researched the Hochschild homology of algebras with heredity ideals.
代数的Hochschild同调和上同调的研究始于G。
5) Hochschild cohomology group
Hochschild上同调群
1.
Hochschild cohomology groups of the hereditary algebras with three simple modules;
具有三个单模的有限维遗传代数的Hochschild上同调群
2.
Based on the minimal projective bimodule resolution constructed by Bardzell,the dimensions of all Hochschild cohomology groups ofΛ_d are calculated explicitly in terms of combinatorics.
设Λ_d是Fibonacci代数,基于对Bardzell极小投射双模分解的细致分析,用组合的方法清晰地计算了Fibonacci代数Λ_d的各阶Hochschild上同调群的维数。
3.
Based on the minimal pro- jective bimodule resolution constructed by Bardzell,the dimensions of all Hochschild cohomology groups of A are explicitly calculated.
设A是有限表示型遗传代数A=kQ的投射模范畴proj A上的根双模rad(-,-)所对应的拟遗传代数,基于Bardzell构造的极小投射双模分解,A的各阶Hochschild上同调群的维数被清晰地计算。
6) Hochschild cohomology
Hochschild上同调群
1.
In this note the formu- lae on the dimensions of the first and the second Hochschild cohomology groups of l-hereditary algebras are obtained explicitly.
设∧是域k上的有限维代数,则∧的低阶Hochschild上同调群在有限维代数的表示理论中扮演着重要的角色,该文得到了l-遗传代数的一阶和二阶Hochschild上同调群的维数方程。
2.
In this thesis we dicuss the category RepR of representations of generalized path algebras ,Hochschild cohomology of generalized path algebras, Hochschild cohomology of quotients of generalized path algebras.
本文研究了广义路代数的表示范畴和广义路代数以及广义路代数商代数的Hochschild上同调群。
补充资料:Александров-(?)ech同调与上同调
Александров-(?)ech同调与上同调
Aleksandrov. tech homology and cohomology
人皿拍国卿甲.为陀h同调与上同调[Alek劝Indmv_乙比hh曲d馆y明do团.助d嗯y;AnO..口脚.一月exar傲0-一“一“。nII.],谱回娜与丰回娜(s pectral hom“-logy and cohomofogy) 满足所有Steen找闷一Eilenberg公理(Steenrod一Ei-lenberg axfoms)(正合性公理可能除外)以及某个连续性条件的同调论与上同调论.A叱碱冠环叮”.一亡ech回娜群(模)(川e协androv一亡e比homolo留歹ou声(m记过es))H,(X,A;G)([l],[2])定义为空间X的所有开覆盖:上的逆向极限lim_H”(“,“’;G);这里“不仅代表覆盖,也代表它的网,丫是戊的子复形,它是“限制在闭集A上的网(见集合族的网(nerve of a family ofsets)).在同伦的意义下,由P到:的包含映射所定义的单纯投射(口,厂)~(“,“‘)的存在性,确保可以过渡到极限.脉K闭J月为。一亡ech上同调群(月eksandrov一亡echcohomofo留groups)H”(X,丸G)定义为正向极限hm_H”(“,:‘;G).同调群满足除正合公理外的所有steenrod一Eilenberg公理.上同调群满足所有的公理,部分地由于这个原因,上同调群常常更有用.如果G是紧群或域,则正合公理对紧统范畴上的同调群也成立.另外,A叱班么凡叮幻B一亡ech同调群和上同调群有连续性:当X=hm_戈时,其同调(上同调)群等于紧统龙的同调(上同调)群的相应极限.人朋耳乏城叮刃。一亡ech理论是满足stcenrod一Eilenberg公理(除上面提到的那个外)和这种连续性条件的唯一理论.在仿紧空间范畴上,常用到Eilenberg一Madave空间的映射刻画上同调;尽管该上同调等价于层论(s heaf theory)中定义的上同调.上同调也可以用某上链复形的上同调来定义,这使得有可能用上链的层进行运算.应用于同调的类似的思想,包含在N.Steenrod,A.Borel及其他人首创的同调论中,它满足包括正合性公理在内的所有公理(但连续性除外).A朋袱么耳叮力B一亡ech同调及上同调,包括经上述修改的,被应用于连续映射理论中的同调问题,变换群理论(与商空间的联系),广义流形理论(特别是各种对偶关系),解析空间论(例如,定义同调的基本类)及同调维数理论等等.【补注】也常把A服班卫瑞叮”B一亡ech上同调称为亡ech上同调(亡ech cohomofogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条