1) set_valued extension
集值扩张
2) setvalued nonexpansive
集值非扩张
1.
Convergence iteration of fixed points of setvalued nonexpansive mapping;
集值非扩张映象不动点迭代收敛性
3) Multi valued nonexpansive mapping
非扩张集值映射
4) Multi-valued nonexpansive mapping
集值非扩张映象
1.
Convergence of the iteration process for multi-valued nonexpansive mappings;
集值非扩张映象的迭代收敛性
5) Nonexpansive set-valued mapping
集值非扩张映射
6) set-valued nonexpansive
δ集值非扩张
1.
This paper discusses convergence of Ishikawa iteration sequence and existence of fixed points for set-valued nonexpansive mapping in uniformly covex Banach space,and the conditions are shown which guarantee the convergence of the iteration sequence to a fixed point.
讨论了δ集值非扩张映象在一致凸Banach空间中不动点非空的充分必要条件与Ishikawa迭代序列的收敛性及确保迭代程序收敛到不动点的条件,所得结果是单值非扩张映象的推广和发展。
补充资料:极大扩张和极小扩张
极大扩张和极小扩张
maximal and minimal extensions
极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条