1) single valued extension property
单值扩张性
1.
Describes some equivalent properties of the Riesz points of an operator by means of single valued extension property,Mbekhta subspace,ascent,descent,nullity,defect and the algebraic multiplicity;gives an example to illustrate the characteristic of Riesz points;generalizes one property of Mbekhta subspace mentioned by Schmoeger C.
从单值扩张性、M bekh ta子空间、升降指数、零维与亏维以及代数重数等方面来刻画算子谱集中的R iesz点,给出了若干实例深化对其特征刻画的认识,推广了Schm oeger C。
2) Single-valued extension property
单值扩张性
1.
tion,we investigated the single-valued extension property and the decomposability of opera-tor weighted shifts,The property of the operator sequence itself is investigated as well.
本文首先给出有界线性算子局部谱的两个估计式,进而,讨论了算子权移位的局部谱,作为应用,研究了算子权移位的单值扩张性、可分用性及算子序列自身的一个性质。
3) single_valued extension property
单值扩张性质
1.
In this paper, we use two subspaces introduced by Mbekhta M in 1987 to study the single_valued extension property of an operator T∈B(X) , where X is a complex Banach space.
利用MbekhtaM于 1987年介绍的两个子空间K(·)和H0 (·)来研究单值扩张性质 ,得到较文献 [1]中定理 10更为推广的结论 。
4) monotone extension
单调性扩张
5) set_valued extension
集值扩张
补充资料:极大扩张和极小扩张
极大扩张和极小扩张
maximal and minimal extensions
极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条