1) positive definite symmetric matrix
正定对称矩阵
2) symmetric positive definite matrix
对称正定矩阵
1.
In 1970, the notion of unnecessary symmetric positive definite matrix was firstgiven by C.
Johnson在[1]中提出了未必对称的正定矩阵的概念(对任何0≠X∈Rn×1,都有X T AX>0),并得到了这种正定矩阵的某些不等式[2];1984年,佟文廷教授在[5]中提出了+PD n类广义正定矩阵的概念(存在正对角矩阵D ,使得对任何0≠X∈Rn×1,都有X T DAX>0),并得到了+PD n类广义正定矩阵的一些性质;1990年屠伯埙教授提出了亚正定矩阵的概念( A+ AT为对称正定矩阵),并建立了较为系统的亚正定理论[3]、[4]。
2.
xk+1=I-2a11+…+annAxk+2a11+…+annb,is constructed for the linear equation Ax=b,of which the coefficient is a symmetric positive definite matrix.
对系数为对称正定矩阵的线性方程组Ax=b,利用系数矩阵A主对角线上元素的和构造了一种新的收敛迭代格式xk+1=I-a11+…2+annA xk+a11+2…+annb,并进一步对这种格式进行了改进。
3) non-symmetric definite matrix
非对称正定矩阵
4) metapositive symmetric definite matrices
次对称正定矩阵
5) real positive definite symmetric matrix
实正定对称矩阵
补充资料:正定矩阵
设m是n阶实系数对称矩阵, 如果对任何非零向量
x=(x_1,...x_n) 都有 xmx^t>0,就称m正定。
正定矩阵在相似变换下可化为标准型, 即单位矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条