说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Hardy-Littlewood-Polya不等式
1)  Hardy-Littlewood-Polya's inequality
Hardy-Littlewood-Polya不等式
2)  Hardy-Littlewood inequality
Hardy-Littlewood不等式
1.
The Hardy-Littlewood inequality is important in analysis mathematics and its applications.
著名的Hardy-Littlewood不等式在分析数学及其应用中均起着重要的作用,但要求出该不等式中的最佳常数的值,却是一个困难的问题。
2.
A local Aλ_r (Ω)-weighted Hardy-Littlewood inequality for differential forms satisfying the A-harmonic tensors is proved.
首先证明了A-调和张量的加Aλr(Ω)-权函数的局部Hardy-Littlewood不等式,此结果类似于Hardy和Littlewood的一个早期不等式。
3.
IIn this paper, we consider the Hardy-Littlewood inequality for p-harmonic type equation.
本篇文章我们主要是研究p-调和类型张量的Hardy-Littlewood不等式。
3)  Hardy-Littlewood integral inequality
Hardy-Littlewood积分不等式
1.
In recent years, thestudy of the integral properties that refer to the results of A harmonic equations andP-harmonic equations is popular, and Hardy-Littlewood integral inequality for theresult of conjugate harmonic functions has become a valid method to study differentialsystem, Schauder estimating in elliptic and parabolic forms, L~2 theorem about ellipticequations etc.
关于调和方程解的积分性质的研究是当前调和分析研究的热点之一,其中共轭调和方程解的Hardy-Littlewood积分不等式已经成为研究微分系统的解的性质的一种有效工具,在椭圆型及抛物线型的Schauder估计、椭圆型方程的L~2理论等方面都有非常广泛的应用。
4)  Hardy-Littlewood maximal inequalities
Hardy-Littlewood最大值不等式
5)  Polya-Szego inequality
Polya-Szego不等式
6)  Plancherel-Polya inequalities
Plancherel-Polya不等式
补充资料:Hardy不等式


Hardy不等式
Hardy inequality

吵理报彝砂否料黯”‘’‘”-矛「玉1,,「一1,于。, ”目Ln」LP一l」,二,‘’ 其中a。不全等于零.在这个不等式中,常数(p/(p一 l))p是最佳的. 2)羊丁移分的Ha[dy不等术: )一…介(!)‘!…’J二〔司’i,了‘·,,一 P>l, 和 1 Ji,(!)Jt…’J一i,·“·,,’“一‘·对于使不等式左端为有限的一切函数,这两个不等式成立,只是f(义)在(O,十的)上几乎处处为零的情况除外.(在这种情况下,不等式变为等式).常数(P/(夕一l)户)和vp是最佳的. Ha川y积分不等式可以推广到任意区间:引一夕〔!)J!}’己…i,二了‘·,,,己一’一告,引一i,(!)‘!…’/二i,二了(·,,”dx,一告,其中O(a
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条