1) matrix zero
矩阵零点
2) nilpotent matrix
幂零矩阵
1.
In this paper,the concept of nilpotent matrix is used to discuss some characters of the nilpotent matrix in general number field.
利用幂零矩阵的概念,在一般数域上讨论了幂零矩阵的一些性质,给出了矩阵是幂零矩阵的一个充要条件,最后利用幂零线性变换的概念,在一般数域上讨论了幂零线性变换一定存在一组基使其在这组基下的矩阵是若当形矩阵,从而给出幂零矩阵的若当标准形。
2.
However, the properties of nilpotent matrix have not been much explored although its definition is given in discussing the multiplication of matrix.
在高等代数中矩阵是研究问题很重要的工具,在讨论矩阵的乘法运算时给出了幂零矩阵的定义,但对其性质研究很少。
3.
This paper is derived to the study of the equation X~m=A where A is a n×n nilpotent matrix with 2≤m∈N.
主要研究当A是幂零矩阵时,方程Xm=A的性质。
3) nilpotent matrices
幂零矩阵
1.
On Nilpotent Matrices over Idempotent and Right-sided Quantale;
幂等右侧Quantale上的幂零矩阵
2.
In this paper,we characterize isotropy subgroups of Jordan normal form of 3-nilpotent matrices under the conjugate action of GLn(F).
刻画了3-幂零矩阵的Jordan标准型在GLn(F)共轭作用下的迷向子群的结构。
3.
This paper devotes to an approach to nilpotent matrices and gives a classification theorem on lower dimensional nilpotent algebras.
讨论了幂零矩阵的性质 ,给出了低维幂零代数的分
4) zero matrix
零矩阵
1.
This paper studied all the situations that the zero matrix and identity can be denoted by the linear combination of three nonzero idempotent matrices,which are not different from each other and the product of any two matrices is commutative.
研究3个不同的乘积两两可交换的非零幂等矩阵P1,P2和P3的线性组合表出零矩阵或单位矩阵的所有可能的情况。
补充资料:函数零点
我们把函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点,即方程的根。
f(x)的零点就是方程f(x)=0的解。这样就为我们提供了一个通过函数性质确定方程的途径。函数的零点个数就决定了相应方程实数解的个数。
若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条