1) Cauchy mean value function
Cauchy中值函数
1.
Based on this, the definition of Cauchy mean value function is given in this paper.
文献[2~6]对微分中值定理“中间点”的渐近性质进行了研究,本文在此基础上,给出了“Cauchy中值函数”的定义,对Cauchy中值函数的分析性质进行了系统的综合讨论,证明了Cauchy中值函数的单调性、可积性、连续性、可微性等分析性质。
2) interpolation function of Cauchy type
Cauchy型插值函数
3) Cauchy's function
Cauchy函数
4) Cauchy mean value theorem
Cauchy中值定理
1.
A more universal result on the mean point in Cauchy mean value theorem;
关于Cauchy中值定理“中值点”的一个一般性结果
2.
By using the limit theory,we discuss and prove the asymptotic behaviour of mean point in Cauchy mean value theorem under weaker condition.
利用极限理论,给出并证明了减弱条件的Cauchy中值定理"中值点"的渐近性。
3.
It is proved that under certain conditions,a mean value ξ in the Cauchy mean value theorem of integral type satisfies lim b→aξ-ab-a=12.
证明了积分型Cauchy中值定理中的中值 ξ ,在一定的条件下 ,满足limb→aξ -ab -a=12 。
5) Cauchy mean value formule
Cauchy中值公式
6) supermedian function
上中值函数
补充资料:本征函数和本征值
算符弲作用于函数f(r)上, 得出另一个函数。若算符弲作用于一些特定的函数Ui(r)上(i=1,2,...)结果等于一常量乘同一函数,即,
则常数Fi称为算符弲的本征值,ui(V)称为属于这个本征值的本征函数。上式称为算符弲的本征值方程。
在量子力学中,一个力学量所可能取的数值,就是它的算符的全部本征值。本征函数所描写的状态称为这个算符的本征态。在自己的本征态中,这个力学量取确定值,即这个本征态所属的本征值。
则常数Fi称为算符弲的本征值,ui(V)称为属于这个本征值的本征函数。上式称为算符弲的本征值方程。
在量子力学中,一个力学量所可能取的数值,就是它的算符的全部本征值。本征函数所描写的状态称为这个算符的本征态。在自己的本征态中,这个力学量取确定值,即这个本征态所属的本征值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条