1) the progression of complex function
复变函数项级数
1.
The definition of the consistent convergence of the degree is put forward, which weakens the conditions of the sum continuum of the progression of complex function, making the original sufficient factor a sufficient and necessary factor.
给出了次一致收敛的定义,减弱了复变函数项级数的和连续的条件,使原来的充分条件变成一个充要条件。
2) Function series
函数项级数
1.
This paper gives the proof of function series convergence uniform theorem in paper [1] by construction method and seek for necessary and sufficient condition in general integral convergent further.
用构造的方法,给出文[1]中函数项级数一致收敛定理的证明,并探索、研究广义积分收敛的充要条件。
2.
This paper gives another form of item-by-item differential theorem of function series.
给出了函数项级数逐项微分定理的另外一种形式 ,它将原来定理中的条件大大减弱 ,结果加强 。
3) functional series
函数项级数
1.
Necessary and sufficient conditions on uniform convergence with functional series
关于函数项级数一致收敛判别法的充要条件
2.
In this paper,the author expounds concepts and related theorems of uniform convergence of functional sequence and functional series,and furthermore gives a specific method of distinguishing uniform convergence of functional series that was not mentioned in the former teaching materials.
论述了函数序列和函数项级数一致收敛的概念和相关定理,并进一步给出了以往教材中没有提到的关于判别函数项级数一致收敛的一个有效充要判别法。
3.
This article is supplying a way to prove the necessity about dirichlet experimental method in functional series.
利用两个辅助函数,论证了函数项级数∑n=1un(x)在区间[a,b]上存在分解式时狄利克雷判别法的必要性。
4) series with function terms
函数项级数
1.
By proving properties of demicontinuous function and series with function terms, use methods of finite coveting theorem and its application in proving problems are introduced.
通过半连续函数及函数项级数等有关性质的证明,介绍了有限覆盖定理的使用方法,说明了它在证明问题中的作用。
5) series of functions
函数项级数
1.
In the paper,we mainly discuss the unification of the conception and the corresponding properties of bivariate functional limit improper integral with parameter,sequence of function and series of functions from the point of view of teaching,so that students can better understand the conception and corresponding properties of uniform convergence deeply.
从课堂教学的角度出发,讨论了二元函数极限、含参量广义积分、函数列、函数项级数一致收敛的概念和相关性质的统一,从而加深学生对一致收敛性的概念和相关性质的理解。
6) series of function
函数项级数
1.
Establishes the sum of formulas for series of functions by using differential equation, extend the sum formulas of five basic elementary function.
以微分方程为工具 ,推出一类一致收敛且具有分析性质的函数项级数的求和公式 ,进而推广了五种基本幂级数 [1 ] 的和函数公式 。
补充资料:变分原理(复变函数论中的)
变分原理(复变函数论中的)
omplex function theory) variational principles (in
f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条