1) coregular rings
余正则环
2) regular congruence
正则同余
1.
The results that the strongly ordered congruences are the strongly regular congruences and that the converses are not true are proved.
设S是有向序半群,本文给出了S上的一类正则同余,称为强序同余的定义及性质。
2.
What subsets of an ordered semigroup S can serve as a congruence class of certain regular congruence on S is still an open problem to be solved.
什么样的子集可以作为一个序半群的正则同余的同余类仍是一个公开问题。
3) regular P-congruence
正则P-同余
1.
This paper first introduces the concepts of regular P-congruences and partial kernel normal system on S(P),then gives the regular P-congruences on S(P)an abstract characterization by means of the partial kernel normal system and a necessary and sufficient condition for a set B={B_i∶i∈I}of pairwise disjoint subsets of S(P)which is a partial kernel normal system in S(P)with P∩B_i as its C-set.
首先介绍了S(P)上的正则P-同余和部分核正规系的概念。
4) regular residual lattice
正则剩余格
1.
Some additional conditions of residual lattice or regular residual lattice are proved to be (equivalent to) each other.
证明了剩余格和正则剩余格中一些典型的附加条件之间的等价性,引入了正规剩余格的概念并给出了其若干性质。
2.
Based on discussing the relationship between regular FI-algebras and regular residual lattice,the relationship between FI-algebras and basis R0-algebras has been investigated.
研究了王国俊教授建立的模糊命题演算的形式演绎系统L*和与之在语义上相匹配的R0-代数以及吴洪博教授提出的基础R0-代数和基础L*系统,提出了WBR0-代数的观点,讨论了它与BR0-代数的关系,简化了BR0-代数的定义,在讨论正则FI-代数与正则剩余格之间关系的基础上,讨论了BR0-代数与FI-代数的相互关系。
5) (regular) residuated lattice
(正则)剩余格
6) strongly regular ring
强正则环
1.
Several new characteristic properties of strongly regular rings are also given.
本文研究满足条件:每个单奇异右(或左)R-模是GP-内射的SF-环,并给出了强正则环的一些刻划。
2.
We characterize strongly regular rings via generalized weakly ideals.
通过单边理想是广义弱理想来刻画强正则环,证明了下列条件是等价的:①R是强正则环;②R是半素的左GP-V′-环,且每一个极大的左理想是广义弱理想;③R是半素的左GP-V′-环,且每一个极大的右理想是广义弱理想。
3.
The paper has researched module comparability theories about regular rings,including the module of regular rings and characterizations about modules over strongly regular rings.
主要对正则环的相关理论进行了研究,包括正则环理想上的模比较,并进一步研究了强正则环的模刻画。
补充资料:正则环
正则环
*-regular ring
‘正则环卜一佣.山r对l招;一pe口朋钾Oe劝则。J 带有对合反自同构俐~“*的正则环(仰Nh助-姗愈义下的)(比州肚nllg(谊the别级侣e ofvon卜犯u-~”,使得戊扩=0蕴涵“二0二正则环的幂等元。称为一个投影算子(p咧戊tor),若。*二。.,正则环的每个左(右)理想由唯一的投影算子生成.这样可以谈到·正则环的投影算子的格.若格是完全的,则是一个连续几何(contjnuous罗。能好).一个有齐次基“t,…,a。(。)4)的有补模格(m团过肚妞-石ce)(亦见有补格(】atti优俪伍comPlemet出))是有正交补的格,当且仅当它同构于某个,正则环的投影算子的格.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条