1) regular ring
正则环
1.
Some properties on group-graded weakly regular rings;
群分次弱正则环的若干性质
2.
We show some relations of morphic ring,G-morphic ring,PP-ring,GPP-ring,Bear ring and regular ring.
讨论了morphic环,G-morphic环,PP环,GPP环,Bear环与正则环之间的关系。
2) regular rings
正则环
1.
The concept of FCGP-regular rings and FCGP-IF rings are given.
首先,引入FCGP-平坦模的概念,研究其性质及等价命题;其次,引入FCGP-正则环和FCGP-IF环的概念,证明了正则环、FCGP-正则环和IF环、FCGP-IF环之间的关系,并给出半单环的刻划。
2.
This Paper discusses some properties of regular rings by the properties of P-flat module,and a useful conclusion of regular rings is also given,and get the main result: R is a regular ring if and only if every singular right R-module is P-flat if and only if every cyclic singular right R-module is P-flat if and only if the homomorphic image of every P-flat right R-module is P-flat.
本文通过P-平坦模的性质,研究了正则环的一些性质,并给出了正则环的一些有益刻画,得到了R为正则环当且仅当每一个奇异右R-模P-平坦当且仅当每一个循环奇异右R-模P-平坦当且仅当P-平坦右R-模的同态像P-平坦这一主要结果。
3.
Some characterizations of right perfect right AGP-injective rings are studied,some conditions urrder which right AGP-injective rings are semisimple Artinian rings or regular rings are giuen respectively.
研究满足一定条件的右AGP-内射环的一些性质和右完全右AGP-内射环的一些特征,给出了右AGP-内射环为Artinian半单环或正则环的一些条件。
3) strongly regular ring
强正则环
1.
Several new characteristic properties of strongly regular rings are also given.
本文研究满足条件:每个单奇异右(或左)R-模是GP-内射的SF-环,并给出了强正则环的一些刻划。
2.
We characterize strongly regular rings via generalized weakly ideals.
通过单边理想是广义弱理想来刻画强正则环,证明了下列条件是等价的:①R是强正则环;②R是半素的左GP-V′-环,且每一个极大的左理想是广义弱理想;③R是半素的左GP-V′-环,且每一个极大的右理想是广义弱理想。
3.
The paper has researched module comparability theories about regular rings,including the module of regular rings and characterizations about modules over strongly regular rings.
主要对正则环的相关理论进行了研究,包括正则环理想上的模比较,并进一步研究了强正则环的模刻画。
4) C R regular ring
CR-正则环
5) Cregular ring
C-正则环
6) strongly regular rings
强正则环
1.
We also study the relationship among the Strongly regular rings,Strongly π-regular rings and Strongly Quasi-Clean rings.
本文定义强拟-C lean环,使用通常环论方法证明强拟-C lean环的同态象、直积、对角矩阵仍是强拟-C lean环,讨论强正则环、强π-正则环与强拟-C lean环之间的关系。
补充资料:正则环
正则环
*-regular ring
‘正则环卜一佣.山r对l招;一pe口朋钾Oe劝则。J 带有对合反自同构俐~“*的正则环(仰Nh助-姗愈义下的)(比州肚nllg(谊the别级侣e ofvon卜犯u-~”,使得戊扩=0蕴涵“二0二正则环的幂等元。称为一个投影算子(p咧戊tor),若。*二。.,正则环的每个左(右)理想由唯一的投影算子生成.这样可以谈到·正则环的投影算子的格.若格是完全的,则是一个连续几何(contjnuous罗。能好).一个有齐次基“t,…,a。(。)4)的有补模格(m团过肚妞-石ce)(亦见有补格(】atti优俪伍comPlemet出))是有正交补的格,当且仅当它同构于某个,正则环的投影算子的格.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条