说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 电磁场角动量流密度张量
1)  angular momentum flow density tensor of electromagnetic field
电磁场角动量流密度张量
2)  moment current density tensor
电磁场动量流密度张量
3)  angular momentum density vector of electromagnetic field
电磁场角动量密度矢量
4)  the stress-energy tensor
电磁场能量动量张量
1.
The spacetime curvature was dealed with produced by the linear polarizational pulse laser of Hermit-Gaussion,one of the currently accepted forms for the intense pulse laser,using the general relativity which includes the linearized Eienstein equation,the Christoffel symbol,the stress-energy tensor and so on.
运用广义相对论中的线性化爱因斯坦方程、克里斯托菲尔联络、电磁场能量动量张量等对最基本且最常用的激光模式 :厄米特高斯 ( 0 ,0 )模线偏振强脉冲激光所产生的局部时空弯曲进行了研究 ,算出了有关的物理量 。
5)  angular momentum of electromagnetic field
电磁场角动量
6)  electromagnetic field tensor
电磁场张量
1.
The equation for electromagnetic properties of a moving medium is discussed by using electromagnetic field tensor,electromagnetic induction tensor and their dual tensor.
应用电磁场张量、电磁感应张量和它们的对偶张量讨论运动介质的电磁性质方程,指出D=εE和B=μH在运动介质中不成立,给出运动介质电磁性质方程的协变形式、向量形式。
2.
The electromagnetic field tensor method is used to calculate the electromagnetic fields inside a parallel-plate simulator and analytical expressions for the field distributions are derived in time domain.
利用电磁场张量法计算了平行板电磁脉冲模拟器内的电磁场并推导了其时域解析表达式。
补充资料:电磁场的保角变换
      数学上规定复平面z和复平面ω之间的变换ω=f(z)是导数f′(z)厵0的各点处是保角变换,它是求解二维电磁场问题的一种有力工具。例如两个平行的柱形电极,当长度远大于间距、从而可以忽略柱体的末端效应时,就可近似为二维问题。保角变换可应用于:静电、静磁问题,包括传输线(即横电磁场)问题;具有复杂边界的导波系统问题;以及电磁场的反演问题。
  
  静电、静磁问题的应用甚广,在电源或磁源以外的区域,二维问题的电场强度或磁场强度等于某一静势函数的梯度,后者满足二维拉普拉斯方程,其解称为(圆)调和函数,记为u(x,y),则
  
  设复变数z=x+jy,则根据已知的u(x,y),总可以找到另一个调和函数v=v(x,y),构成解析函数
  ω(z)=u+jv
  z=x+jy
  称u和v为共轭函数,ω为复势函数。可以证明v也满足二维拉普拉斯方程并且在 z复平面上的等值线是两簇互相正交的曲线。若选其中的一簇为等势线,则另一簇就代表力线(电力线、磁力线),相应地称这两簇曲线所对应的函数为势函数和流函数(通量函数)。
  
  
  若能找到两个共轭函数,其中一个函数的等值线恰好和所研究的电极边界重合,则另一个函数的等值线即代表由电极发出的电力线。因而,根据电力线的流函数就可以计算出电极表面所带的电荷量,从而可以计算场分布和电容量等。例如平板电容器二维边缘场的分析(图1a)。设两极板的电位分别为±1伏,间距为2(长度单位),置于z-平面中(z=x+jy),根据对称性,只需分析上半平面(y>0)的场。利用解析函数
  
  的保角变换(t=ξ+jη),使z-平面上由点l、m、n连成的多角形变换成以点l′、m′、n′连线为界的上半t-平面(图1b)。已知后者的复势函数为
  
  故平板电容器的复势函数满足关系式
  
  据此可得出在z-平面内的等势线(u=常数)和电力线(v=常数)的曲线方程。
  
  某些边界形状较复杂的导波系统,经保角变换可变换成一个较易处理的简单边界形状。例如利用 H波导的电磁场解描述沟槽形波导(图2)的电磁场时就需要用保角变换。
  
  
  在电磁场反演问题中,由已知远区场推算电磁场源的距离、方向和形状时,可采用保角变换,将已知二维闭合曲线的外域变换成单位圆的外域,并利用变换函数以及远区场两者的劳伦茨级数展开式的系数关系,可以得出解的低频估计。
  
  在具体问题中,根据预给的势函数或流函数,去寻找合适的共轭函数并不容易。对于场域具有多角形边界的问题,施瓦茨变换是一种很有用的方法。它把一个复平面上由实轴和无限大的圆弧所围成的上半平面变换到另一复平面上的多角形内域,或反之。对于除了平角和零角之外只含一、二个正角的多角形,施瓦茨变换是初等解析函数;当正角增加到三、四个,变换与椭圆积分及椭圆函数有关。椭圆函数属于双周期解析函数,常应用于分析带状线等特种截面传输线。
  
  

参考书目
   林为干:《微波理论与技术》,科学出版社,北京,1979。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条