1) zero-commutative near ring
零交换拟环
2) nil commutative ring
诣零交换环
1.
It is suggested that they are subdirect sums of localcommutative rings and nil commutative rings, or of local commutative rings.
本文讨论了一般结合环与(左)S-单式周期环在一定条件下的结构问题,得出它们分别是局部交换环与诣零交换环,或为局部交换环的亚直和。
3) non-commutative clomain
无零因子非交换环
4) quasi-nilpotent ring
拟幂零环
5) commutative zero-product
交换零积
1.
It is considered that additive commutative zero-product preserving maps on the algebraA,B of standard operator algebras,acting on real or complex Babach spaces H.
讨论了B(A)上保交换零积的可加映射,其中A是Banach空间X上的标准算子代数。
2.
It is obtained that additive commutative zero-product preserving maps on the algebra(B(H)) of all bounded linear operators,acting on the real or the complex Hilbert space H.
讨论了B(H)上保交换零积的可加映射,其中B(H)是由Hilbert空间H上的有界线性算子全体组成的Banach代数。
6) zero commutativity
零交换性
补充资料:零息票债券;零券息债券
零息票债券;零券息债券一种以低于票面价值的价格发行的债务工具。债券不支付任何票息;它在到期日是以面值赎回的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条