1) π-regular
π-正则
1.
The minimum group congruence on strictly π-regular semigroups;
严格π-正则半群上的最小群同余
2.
In this dissertation, we mainly describe congruences on some π-regular semigroups which all of regular elements can t form subsemigroups.
本文主要在正则元集不是纯正子半群的一类π-正则半群(主要是GV-半群)中研究同余,其主要思想是核和迹的推广,再适当添加某些条件,给定同余对的概念,最后找到同余和同余对之间的一一对应;还给出了某些π-正则半群的最小Clifford半群同余,Clifford半群同余和拟C-半群同余,全文共分三章,具体内容如下: 第一章主要对矩形群的nil-扩张的半格的r-半素clifford半群同余进行了构造和描述,在这一章里,先定义了矩形群的nil-扩张的半格S上的r-半素clifford半群同余对(ζ,K),它是由S上的一个正规子半群K及<E(S)>上的一个半格同余ζ组成的对,并对任意的a,b∈S,x∈K,e∈E(S),满足下面的条件: (A)ea∈K,(r(a)~0,e)∈ζ(?)a∈K。
2) π-regular ring
π-正则环
1.
In this paper we study extensions of Abelian π-regular rings.
本文研究了Abelπ-正则环的扩张。
2.
Moreover,we show that: If R is a left G-morphic ring,the same is true of eRe for every idempotent e∈R;Every unit π-regular ring is a left(right) G-morphic ring;Every left G-morphic ring is a right GP-injective ring.
我们给出了G-morphic环的定义,证明了如下主要结果:对R中的任意幂等元e,如果R是左G-morphic环,则eRe也是左G-morphic环;每一个幺π-正则环是左(右)G-morphic环;每一个左G-morphic环是右GP-内射环。
3.
Some connections between AGP-injective rings and π-regular rings are given here.
给出了AGP-内射环与π-正则环的一些联系,证明了若R为reduced环,则R是左AGP-内射环当且仅当R是π-正则环,并着重讨论了满足一定条件的AGP-内射环是π-正则环。
3) π~*-regular ring
π~*-正则环
4) π-regularity
π-正则性
5) π-regular semigroup
π-正则半群
1.
In this paper,the author studies the π-regular semigroups which lattices of subsemigroups are 0-distributive lattices or 0-modular lattices,in particular,characterises the π-regular semigroups which lattices of subsemigroups are 0-modular are complemented.
本文分别研究了子半群格是0-分配格和0-模格的π-正则半群,特别地,还刻划了子半群格是0-模的有补格的π-正则半群。
2.
The authors establish the definition of the weak natural partial order and majorization on π-regular semigroups and discuss their related properties.
定义并讨论了π-正则半群上弱自然偏序关系和优化、劣化的概念,以及它们的相关性质。
3.
Aim To study the strong splittability of the semigroup class of archimedean semigroup,π-regular semigroup and so on.
目的研究阿基米德半群,π-正则半群等半群类的强可分性。
6) Abelian π-regular ring
Abel π-正则环
补充资料:π, π-conjugation
分子式:
CAS号:
性质:单键和双键相互交替排列的共轭体系。最简单的为1,3-丁二烯,而苯分子则是一个具有高度对称结构的闭合共轭体系。除碳碳双键外,碳碳叁键、碳氧双键等,都可组成π,π-共轭。例如:CH2=CH—C≡CH;CH2=CH—CH=O。由π,π-共轭引起的使分子内能降低、键长发生平均化等电子效应,称为π,π-共轭效应。
CAS号:
性质:单键和双键相互交替排列的共轭体系。最简单的为1,3-丁二烯,而苯分子则是一个具有高度对称结构的闭合共轭体系。除碳碳双键外,碳碳叁键、碳氧双键等,都可组成π,π-共轭。例如:CH2=CH—C≡CH;CH2=CH—CH=O。由π,π-共轭引起的使分子内能降低、键长发生平均化等电子效应,称为π,π-共轭效应。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条