说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 折线逼近
1)  broken line approximation
折线逼近
2)  polygonal approximations method
折线逼近法
1.
By using polygonal approximations method,the global approximation solution is constructed for the initial-boundary value problem of non-convex scalar conservation laws in Finite Interval,and its convergence to the global weak entropy solution of corresponding initial-boundary value problem is proved in this paper.
使用折线逼近法,构造了有限区间上非凸单个守恒律初边值问题的整体近似解,并证明其收敛到初边值问题的整体弱熵解。
3)  the fold line of many segments approach indication
多段折线逼近法
1.
The essay gives a way for a nonlinear correction with the fold line of many segments approach indication in the design of intellectual atmospheric pressure sensor system,and made a compare between the results and the experimental data,the way was testified.
提出了在智能气压传感器算法设计中,利用多段折线逼近法实现非线性校正的一种应用技巧,并以计算出的结果与实验标定数据相比较,验证了该方法的可行性。
4)  Line approximation
直线逼近
1.
We solved these problems succesfully with filtering by mathematical morphology, with contour tracking, and with line approximation.
首先对图象进行二值化,再用数学形态学中的闭合和开启算子从所得的二值图象中提取出模式的封闭边缘,随后通过对此边缘进行直线逼近得一多边形,最后将此多边形与各模板进行匹配而完成对模式的正确识别。
5)  straight line approaching
直线逼近
1.
A new method for node dividing based on straight line approaching cam contour is presented.
提出了等误差直线逼近曲线的节点划分方法,其特点是计算简单、结果精确,并能保证所有插补段上的逼近误差均等,且能控制其大小。
2.
This paper presents a new method for node dividing based on straight line approaching cam contour.
本文提出了一个等误差直线逼近曲线的节点划分方法,其特点是计算简单、结果精确,并能确保所有插补段上的逼近误差均等,且能控制其大小。
6)  linear approximation
线性逼近
1.
Algorithm for automated test data generation based on branch function linear approximation;
基于分支函数线性逼近的测试数据自动生成算法
2.
With the case of SAFER++ as an example,the special linear approximations were obtained by analyzing the basic modules.
以SAFER++为例,通过基础模块的密码特性分析,建立密码分析的线性逼近式。
3.
This paper presents a 6-round linear approximation and its bias of SFAER-64 based on the analysis of basic moduls.
研究了SAFER-64基础模块的密码特性和建立六轮加密的线性逼近式及其优势,从理论上证明了本文的线性逼近式的优势只与第2、3、6、7字节的种子密钥有关,与其他子密钥无关,从而可以运用多重线性密码分析法攻击第2、3、6、7字节密钥。
补充资料:折线
用线段依次连接不在一直线上的若干个点所组成的图形。各线段称为折线的边;各点称为折线的顶点,其中第一点称为起点,最后一点称为终点。起点和终点重合的折线称为封闭折线或多边形。不相邻的两边都不相交的折线称为简单折线。如果对于简单折线的任一边所在的直线,折线其他各边都在其同侧,则称此为凸折线;否则称为凹折线。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条