1) Invariant subring
不变子环
2) invariant subnear-ring
不变子近环
1.
Suppose that U is a nonzero invariant subnear-ring of N and 2N≠0,then the main results are obtained as follows: (1) d1d2(U) =0 implies d1=0 or d2=0; (2) d1 (x)d2 (y) =-d2 (x)d1 (y) for all x,y ∈U im.
本文证明了如下结果:设N是零对称3-素近环,U是N的一个非零不变子近环,d1d2为N的求导,2N≠0。
2.
Let N be a zero-symmetric -prime near-ring with nonzero derivation d and U a nonzero invariant subnear-ring of N such that d(U)UN_d and 2U≠0.
本文证明了如下如果:设N是零对称3—素近环,U是N的一个非零不变子近环,d是N的一个非平凡求导,如果且,那么以下条件等价:(1)对每个是N的乘法中心元,(2)对所有有是一个无零因子交换环。
3) Recursive invariant subspace
循环不变子空间
1.
Recursive invariant subspace is one of the important mathematic tools used in control science and signal processing theory.
循环不变子空间是常用于控制科学和信号处理理论的重要数学工具之一。
4) invariant tori
不变环面
1.
In this paper,using KAM theory,we obtain the boundedness of solutions as well as the existence of many invariant tori for jumping nonlinear oscilltions.
利用KAM理论研究了一类跳跃非线性方程解的有界性及大量不变环面的存在性 。
2.
In this paper,bifurcation of subharmonic solutions and invariant tori of a three-dimensional system under periodic perturbation is studied.
假设此三维系统有一族闭轨,利用Poincar(?)映射及积分流形定理,得到了在周期扰动下由这族闭轨产生次调和解和不变环面的条件,并讨论了次调和解的鞍结点分支。
5) cycle invariability
环路不变
6) Invariant torus
不变环面
1.
Bifurcations of nonhyperbolic invariant torus;
一类非双曲不变环面的分支
2.
By the method of averaging and Floquet theory, the bifurcations of the nonhyperbolic invariant torus in the extended phase space are studied.
利用Floquet理论与平均法 ,讨论在周期扰动下此未扰动系统的非双曲不变环面在扩展相空间中的初等分支 。
3.
By means of periodic transformations and integral manifold theory, we investigate planar periodic perturbed systems, and obtain for the strong resonant case , a condition under which an invariant torus is bifurcated from a weak focus of order one.
本文利用周期变换和积分流形理论研究平面周期扰动系统,在强共振情况下获得了从一阶细焦点分支出不变环面的简洁条件,本文中的非共振条件不同于[5]中所给出的非共振条件。
补充资料:变子
原子物理学中指数十种不稳定的基本粒子。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条