1) quasi-period bifurcation
概周期分岔
4) Period doubling bifurcation
倍周期分岔
1.
Period doubling bifurcation and chaos in the induction of ventricular fibrillation by rapid pacing;
快速起搏诱发心室颤动过程中的倍周期分岔和浑沌
2.
Analysis of period doubling bifurcation in power system;
电力系统倍周期分岔分析
3.
With this device, we can observe that a series of nonlinear phenomena, such as period doubling bifurcation, strange atrractor, and limited chaos, appear respectively under the different initial conditions.
介绍了一种非线性电路的混沌现象的实验装置,该装置可以观察到不同初始值条件下出现的倍周期分岔、阵发混沌、奇异吸引子等一系列现象和过程,并给出电路状态突变的参数条件。
5) period-doubling bifurcations
倍周期分岔
1.
Studying the nonlinear dynamics of a two-peak chaotic system,we found that the behaviour of the system begins with chaos,through intermittent chaotic,fixed points,period-doubling bifurcations to two chaotic attractors,converges to another fixed point,finally turns up to a new chaotic state.
通过对一双峰混沌系统的非线性动力学行为的研究,发现随着系统参数的变化,双峰混沌系统由混沌状态开始,经阵发性混沌、不动点、倍周期分岔到受初始值的影响两个混沌吸引子,而后又收敛为另一个不动点,最后再次进入混沌状态。
6) period-doubling bifurcation
倍周期分岔
1.
Mechanism of period-doubling bifurcation in DCM DC-DC converter;
不连续导电模式DC-DC变换器的倍周期分岔机理研究
2.
Controlling the period-doubling bifurcation of logistic model;
logistic模型的倍周期分岔控制
3.
By using second-order averaging method,this paper analyzes the primary resonance bifurca- tion and period-doubling bifurcation in a single-machine infinite-bus power system disturbed by a periodic load,which changes the problems of periodic orbit bifurcations into those of equilibrium bifurcations.
文章研究周期性负荷扰动的单机无穷大电力系统的主共振分岔和倍周期分岔,由于采用二阶平均法,使得对原系统周期轨道分岔的研究变成对平均系统平衡点分岔的研究。
补充资料:概周期微分方程
其右端函数对自变量是概周期函数的微分方程;即在方程
(1)中,??(x,t)是t的概周期函数。这里x是n维向量,??(x,t)是n维向量函数。概周期微分方程的发展历史不长,但由于它具有实际背景(如天体力学和非线性振动的问题)而显示出生命力。特别是,1945年,A.H.柯尔莫哥洛夫利用无理性条件,指出哈密顿系统具有拟周期解。1963年,Β.И.阿诺尔德又给出严格证明,由此证明了太阳系不稳定的概率为零,解决了平面限制性三体问题的稳定性问题,从而使P.-S.拉普拉斯提出的已历时二百年的太阳系稳定性问题有了重大的突破。这样,概周期微分方程就更显出它的重要性。
对概周期方程(也称概周期系统)(1),主要是讨论其概周期解的存在性和稳定性。线性微分方程是微分方程论的基础,因此概周期线性微分方程的结构以及概周期解的摄动理论也是概周期系统的重要课题。
线性系统 法瓦尔性质 对概周期线性系统, (2)式中A(t)是n×n概周期方阵;??(t)是n维概周期向量函数,定义A(t)的外壳为
。 法瓦尔提出这样的条件:对于(2)的齐次外壳方程系 (3)的任一非显易的有界解xB(t),总满足关系式, 称这条件为法瓦尔性质。这性质是从常系数线性系统或周期性线性系统总结出来的。法瓦尔指出,在这个条件下,(2)的有界解的存在性含有概周期解的存在性。
弗洛奎特理论 周期线性系统可以通过正则、线性、周期的变换化为常系数线性系统。通常称这种关系为弗洛奎特理论。人们希望这种性质可以推广到概周期线性系统或拟周期线性系统。G.R.塞尔指出,弗洛奎特理论不能推广到概周期线性系统(1974)。
指数型二分性 从第一近似观点出发,在原点附近的非线性系统
(4)(式中A的特征根的实部不为零),与它的线性部分 有相同的拓扑结构,原因在于后者具有指数型二分性。对于线性部分为变系数的非线性系统
, (5)当它的线性部分
(6)是概周期系统且其特征指数不为零时,R.J.萨克和塞尔研究了A(t)和其外壳H(A(t))的性质,得到(6)具有指数二分性的条件(1974、1976)。
非线性系统 对概周期系统 (1)的概周期解的求解,尚无统一的办法。Z.奥皮尔举出存在这样的系统(1),它的解均有界,但没有概周期解(1961)。A.M.芬克和P.O.弗雷德里克桑构造了一个概周期系统,其每个解都是毕竟有界,但没有概周期解。由此可见,除了一切解有界以外,还必需附加一些条件,才能得到概周期解。在这方面G.塞费特、塞尔、米尔、J.卡托等人都提出了不同的附加条件。 类似于法瓦尔的考虑,L.阿梅里奥对概周期系统(1)提出分离性的概念,而探讨概周期解的存在性。设K是(1)的定义中的致密集,对任一g(x,t)∈h(??(x,t)),当x(t),y(t)均为
(7)的解,且 x(t),y(t)均在K上,且常存在λ(g)>0,使‖x(t)-y(t)‖≥λ(g), 则说(1)在 K上满足分离性条件。阿梅里奥证明了,这种情况下,(1)具有概周期的解。
讨论概周期微分方程要涉及到哈密顿系统以及三体问题。
参考书目
G.E.O.Giacaglia,Perturbation Methods in Nonlinear System,Springer-Verlag,New York,1972.
A.M.Fink,Almost Periodic Differential Equation,Lecture Notes in Math.,377,1974.
A.S.Besicovitch,Almost Periodic Functions,Cambridge Univ.Press,Cambridge,1932.
T.Yoshizawa,Stability Theory and the Existence of Periodic Solution and Almost Periodic Solution,Springer-Verlag,New York,1975.
W.A.Coppel,Dichotomies in Stability Theory,Lec-ture Notes in Math.,6201,1978.
(1)中,??(x,t)是t的概周期函数。这里x是n维向量,??(x,t)是n维向量函数。概周期微分方程的发展历史不长,但由于它具有实际背景(如天体力学和非线性振动的问题)而显示出生命力。特别是,1945年,A.H.柯尔莫哥洛夫利用无理性条件,指出哈密顿系统具有拟周期解。1963年,Β.И.阿诺尔德又给出严格证明,由此证明了太阳系不稳定的概率为零,解决了平面限制性三体问题的稳定性问题,从而使P.-S.拉普拉斯提出的已历时二百年的太阳系稳定性问题有了重大的突破。这样,概周期微分方程就更显出它的重要性。
对概周期方程(也称概周期系统)(1),主要是讨论其概周期解的存在性和稳定性。线性微分方程是微分方程论的基础,因此概周期线性微分方程的结构以及概周期解的摄动理论也是概周期系统的重要课题。
线性系统 法瓦尔性质 对概周期线性系统, (2)式中A(t)是n×n概周期方阵;??(t)是n维概周期向量函数,定义A(t)的外壳为
。 法瓦尔提出这样的条件:对于(2)的齐次外壳方程系 (3)的任一非显易的有界解xB(t),总满足关系式, 称这条件为法瓦尔性质。这性质是从常系数线性系统或周期性线性系统总结出来的。法瓦尔指出,在这个条件下,(2)的有界解的存在性含有概周期解的存在性。
弗洛奎特理论 周期线性系统可以通过正则、线性、周期的变换化为常系数线性系统。通常称这种关系为弗洛奎特理论。人们希望这种性质可以推广到概周期线性系统或拟周期线性系统。G.R.塞尔指出,弗洛奎特理论不能推广到概周期线性系统(1974)。
指数型二分性 从第一近似观点出发,在原点附近的非线性系统
(4)(式中A的特征根的实部不为零),与它的线性部分 有相同的拓扑结构,原因在于后者具有指数型二分性。对于线性部分为变系数的非线性系统
, (5)当它的线性部分
(6)是概周期系统且其特征指数不为零时,R.J.萨克和塞尔研究了A(t)和其外壳H(A(t))的性质,得到(6)具有指数二分性的条件(1974、1976)。
非线性系统 对概周期系统 (1)的概周期解的求解,尚无统一的办法。Z.奥皮尔举出存在这样的系统(1),它的解均有界,但没有概周期解(1961)。A.M.芬克和P.O.弗雷德里克桑构造了一个概周期系统,其每个解都是毕竟有界,但没有概周期解。由此可见,除了一切解有界以外,还必需附加一些条件,才能得到概周期解。在这方面G.塞费特、塞尔、米尔、J.卡托等人都提出了不同的附加条件。 类似于法瓦尔的考虑,L.阿梅里奥对概周期系统(1)提出分离性的概念,而探讨概周期解的存在性。设K是(1)的定义中的致密集,对任一g(x,t)∈h(??(x,t)),当x(t),y(t)均为
(7)的解,且 x(t),y(t)均在K上,且常存在λ(g)>0,使‖x(t)-y(t)‖≥λ(g), 则说(1)在 K上满足分离性条件。阿梅里奥证明了,这种情况下,(1)具有概周期的解。
讨论概周期微分方程要涉及到哈密顿系统以及三体问题。
参考书目
G.E.O.Giacaglia,Perturbation Methods in Nonlinear System,Springer-Verlag,New York,1972.
A.M.Fink,Almost Periodic Differential Equation,Lecture Notes in Math.,377,1974.
A.S.Besicovitch,Almost Periodic Functions,Cambridge Univ.Press,Cambridge,1932.
T.Yoshizawa,Stability Theory and the Existence of Periodic Solution and Almost Periodic Solution,Springer-Verlag,New York,1975.
W.A.Coppel,Dichotomies in Stability Theory,Lec-ture Notes in Math.,6201,1978.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条