1) Hamiltonian-connected
哈密顿连通
1.
A graph G is Hamiltonian-connected if every pair of distinct vertices u and vare joined by a Hamiltonian path,and panconnected if u and v are joined by paths of alllengths q,for d(u,v)≤q≤n-1(where d(u,v)is the distance between u and v,and n is theorder of G).
如果图G的每对不同顶点u和v之间都有哈密顿路相连,则称G是哈密顿连通的;而如果对于所有满足条件以d(u,v)≤q≤n-1的整数q,u和v之间有长为q路相连,则和G是泛连通的,其中以d(u,v)是u和v间的距离,而n是G的顶点数。
2) Hamilton-connected graphs
哈密尔顿连通图
5) strongly Hamiltonian-connected
强哈密尔顿连通
1.
Using the coutraction technique,we gencralize some results on Hamiltonian digraphs,and present some sufficient conditions involving minimum semi-degree,minimum degree sum and the number of arcs of arcs to force a digraph to be strongly Hamiltonian-connected.
利用收缩技术,推广了有向图理论中哈密尔顿性问题的几个结论,给出了有向图是强哈密尔顿连通的最小半度、度和、最少边数等条件。
6) Hamiltanian path problem
哈密顿通路问题
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条