1) θ-arcwise connected spaces
θ-弧连通空间
2) θ-connected space
θ-连通空间
1.
A more extensive topological space,θ-connected space,has been defined by comparing with the connected spaces.
拓扑空间 X是θ- 连通的当且仅当X不能表示为两个非空的θ- 分离子集的并;设 CS s∈S是拓扑空间X 的一簇θ- 连通子空间,如果存在s0∈S使得Cs0与其它任何Cs 都不是θ- 分离的,则 Ys∈SCs 是θ- 连通的;设 S是一指标集,对于任意的s∈S,Xs 是非空的θ-连通空间,则乘积空间∏Xs 也是θ-连通空间;θ-连通分支是θ-闭集。
3) θ-arcwise connected
θ-弧连通
4) Local θ-connected space
局部θ-连通空间
5) weakly θ-connected space
弱θ-连通空间
1.
In this paper,the concept of weakly θ-connected space is given,and its topological properties is preserved,Finally,the properties of finitely productive heredity are studied.
给出弱θ-连通空间的概念,证明了弱θ-连通性是拓扑不变性,有限可积性,可遗传性等性质。
6) arcwise connected space
弧连通空间
1.
By the property of the super-distance space and the connectedness of topological space,we obtained that all of the super-distance space its subspaces and product spaces are neither connected spaces nor arcwise connected space,meanwhile the super-distance space which isn t discrete topological space isn t partially connected space.
利用超距空间的基本性质及拓扑空间的连通理论,得出超距空间及其子空间、积空间既不是连通空间,也不是弧连通空间,而非离散的超距空间不是局部连通空间。
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条