说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 局部线性GMM估计
1)  local linear estimator by GMM
局部线性GMM估计
2)  local linear estimate
局部线性估计
3)  kernel estimation
局部线性估计
1.
The regression function m (- ) is estimated by the kernel estimation and local linear estimation.
本文针对传统的线性回归模型误差较大的特点,利用核估计与局部线性估计方法,以气温、节假日为自变量,以用水量为因变量建立了城市日用水量的多元非参数回归模型。
2.
The regression function m(·)is estimated by the kernel estimation and local linear estimation.
根据城市用水量的影响因素及特点,针对传统的线性回归模型误差较大的缺点,基于核估计与局部线性估计理论,建立了城市日用水量的非参数回归预测模型。
4)  local linear estimation
局部线性估计
1.
A new local linear estimation method for varying coefficient models;
变系数模型中的新局部线性估计法
2.
A cloud amount forecasting method based on local linear estimation of non-parametric regression model
基于非参数回归模型的局部线性估计云量预报方法研究
3.
A local linear estimation was used with instrumental variables, when all variables were random.
将非参数单方程计量经济模型的局部线性估计方法与传统联立方程计量经济模型的工具变量估计方法相结合 ,在随机设计下 ,提出了非参数联立方程计量经济模型的局部线性工具变量估计方法 ,并利用大数定律和中心极限定理等在内点处研究了该方法的大样本性质。
5)  local linear kernel estimation
局部线性核估计
1.
GMDH modeling and forecasting based on local linear kernel estimation;
基于局部线性核估计的GMDH建模及预测
2.
This paper introduces method of local linear kernel estimation to the chaos time series forecasting to improve the forecasting accuracy.
将非参数局部线性核估计引入混沌时间序列预测,利用其优良的估计和预测能力,极大地提高了混沌时间序列的预测精度,并从理论上证明了一些传统的混沌序列预测方法仅仅是该方法的特殊形式。
6)  Local Linear Estimator
局部线性估计
1.
As a nonparametric regression method,local linear estimator has excellent statistical properties,and this paper uses it to gain the nonparametric estimator of conditional moment by using semiparametric methods,and proves its consistency and convergence rate.
作为一种非参数回归方法,局部线性估计具有优良的统计特性,因此本文用它来得到条件矩的一个非参数估计,并在此基础上证明了估计参数的一致性和收敛速率。
补充资料:线性最小二乘估计
      以误差的平方和最小为准则根据观测数据估计线性模型中未知参数的一种基本参数估计方法。1794年德国数学家C.F.高斯在解决行星轨道预测问题时首先提出最小二乘法。它的基本思路是选择估计量使模型(包括静态或动态的,线性或非线性的)输出与实测输出之差的平方和达到最小。这种求误差平方和的方式可以避免正负误差相抵,而且便于数学处理(例如用误差的绝对值就不便于处理)。线性最小二乘法是应用最广泛的参数估计方法,它在理论研究和工程应用中都具有重要的作用,同时它又是许多其他更复杂方法的基础。线性最小二乘法是最小二乘法最简单的一种情况,即模型对所考察的参数是线性的。线性动态模型为
  
  
  
  
  yk=xθ+εk式中数据向量xk=[yk-1,yk-2,...,yk-n,uk-1,uk-2,...,uk-n]T;参数向量θ=[-a1,-a2,...,-an,b1,b2,...,bn]T;εk为误差;n为模型阶数;N为数据长度(N≥2n)。
  
  选择估计准则
  
  
  
    使J为最小的参数估计,称为模型的线性最小二乘估计,用符号孌LS表示。可以得出
  
  
  
    孌LS=(XTX)-1XTY式中矩阵XT=[xn+1,xn+2,...,xnn+N];向量Y=[yn+1,yn+2,...,ynn+N]T
  
  孌LS是数据的线性函数,因此称为线性最小二乘估计。它的突出优点是:对于任何一组数据,只要孌LS存在,不要求了解误差序列{εk}的统计特性,便能按照J求出孌LS;算法很简单。
  
  孌LS存在的条件是矩阵(XTX)满秩,这要求{uk}为n阶持续激励输入。
  
  当误差序列{εk}是零均值的白噪声,并对输入、输出功率加以适当的限制时,孌LS是渐近无偏的强一致性估计,即当N →∞时,。但是对于有限的数据,上述结论不能成立,而且通常误差{εk}也不是白噪声,故一般情况下孌LS是有偏估计,这是它的缺点。为了克服这个缺点,可以采用其他改进的估计算法,例如广义最小二乘估计、辅助变量估计和极大似然估计等。
  
  上述单输入单输出系统的线性最小二乘估计算法还可推广到多输入多输出系统,并且有相应的递推估计算法。
  
  参考书目
   G.C.哥德温、R.L.潘恩著,张永光、袁震东译:《动态系统辨识:试验设计与数据分析》,科学出版社,北京,1983。(G.C.Goodwin and R.L. Payne,DynamicSystem Identification: Experi-ment Design and Data Analysis, Academic Press, NewYork,1977.)

  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条