1) climbing high precise direct
爬坡精细算法
1.
Induced segmentation is introduced to the area of solving time-varying system and the climbing high precise direct is constructed for solving a special kind of time-varying system.
通过引进诱导分划的概念及相关技巧 ,提出了一类特殊时变系统的爬坡精细算法 (CHPD)。
2) Climbing operator
爬坡算子
1.
That is,for improving search direction and reducing the probability of " prematurity ",it introduces climbing operator with combination of genetic algorithm.
本文在PSO的思想基础上提出了一种改进搜索方向,降低"早熟"概率的方法,即结合遗传算法,引入了爬坡算子。
3) hill climbing
爬坡法<自>
4) precise algorithm
精细算法
1.
A general numerical model to identify multi-variables of the unidimensional non-linear inverse problem of heat conduction in transient state is presented by a precise algorithm for direct heat conduction, based on Bregman distances in the construction of regularization terms in Tikhonov’s function.
基于一种时域正演精细算法,引入Bregman距离函数作为Tikhonov函数的正则项,建立了求解多宗量一维瞬态非线性热传导反问题的数学模型,可对非线性内热源强度、导温系数和边界条件等多个热学参数进行组合识别。
2.
An application of a self-adaptive precise algorithm in time domain is presented in this paper for solving self-excited vibration problems.
应用时域自适应精细算法求解自激振动问题,将各物理量在离散时段内展开,可进行自适应递推计算,对非线性计算不做附加假设,避免了非线性迭代。
5) precise integration method
精细算法
1.
Based on the precise integration method of the exponential matrix, we discuss the solution of the state equations for nonlinear dynamics system governed by the equation =H·v+f(v,t).
基于指数矩阵精细算法,对非线性动力状态方程 v=H·v+f(v,t)进行求解。
2.
To raise the calculation precision of active structural control, the closed-loop and closed-open-loop control algorithms for instantaneous structural optimization were improved based on the active structural control strategy and the precise integration method (PIM).
为了提高结构控制算法的计算精度,基于动力系统精细算法及结构主动控制原理,对结构瞬时优化闭环及开闭环控制算法进行了改进。
6) path of steepest ascent
爬坡路径法
1.
The path of steepest ascent experiment was adopted to approach the optimal region of the medium composition.
运用爬坡路径法对这3种因子进行实验,获得这3种重要因子的最适质量浓度范围。
补充资料:波浪爬坡高度
波浪爬坡高度
wave run-up on slope
bolang PaPo gaodu波浪爬坡高度(wave run一up on slope)波浪沿斜面爬升的垂直高度,如图中场所示,简称波浪爬高。波浪爬高的大小直接影响土石坝坝顶高程的确定。波浪爬高 波浪爬高的数值与波浪要素(波高及波长)、斜面坡度、护面材料、水深及风速等因素有关,需通过计算确定。其计算方法有规则波法与不规则波法两类,前者把波浪及其爬高作为大小不变的均匀系列;后者则将它们看作大小不等的随机系列,并采用其统计特征值来表示。过去工程设计中多采用规则波法,用比较简单的经验公式进行计算,但结果比较粗略。不规则波法的计算原理是:考虑到波浪要素在时段内的变化,找出其统计分布规律,按土石坝的不同级别,分别采用不同累积概率(工程中也称保证率)时的爬高值作为设计波浪爬高。(王玺)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条