说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 解析函数空间
1)  holomorphic function space
解析函数空间
2)  Banach space of analytic function
解析函数Banach空间
1.
)Based on the definitions of nonwandering operator in Banach space and the nonwandering operator semi-groups of the PDE in special Banach space,the definition of nonwandering operator sequences is given out and the existence on infinite dimensional separable Banach space of analytic function is verified by the methods of eigenvectors.
根据Banach空间上非游荡算子以及Ba-nach空间上的PDE的非游荡算子半群的定义,给出Banach空间上非游荡算子序列的定义,运用特征向量的方法证明在无穷可分解析函数Banach空间上非游荡算子序列的存在性。
3)  analytical potential function
全空间解析势能函数
4)  analytic function
解析函数
1.
On the deducing and the teaching of Cauchy-Rieman equations of analytic function;
论解析函数的Cauchy-Riemann条件的推导与教学
2.
Some properties of p-valents analytic functions with negative coefficients;
关于一类负系数p叶解析函数的某些性质
3.
A sufficient and necessary condition of the analytic function with the higher-order derivative;
解析函数的一个充要条件及高阶导数公式
5)  analytical function
解析函数
1.
By mirror image method and regularity of analytical function,the expression of the electric potential and intensity of a line charge within a thin cylindrical conductor are obtained,and the equations of the equipotential lines and the electric field lines are obtained.
利用电象法和解析函数的规律,得出均匀带电线与接地薄导体圆筒内的电势和电场强度表达式,并给出了等势线与电场线方程。
2.
Based on relationship between analytical functions and Bezier curves,the numerical method of conversion between them was presented.
根据解析函数和Bezier曲线的相关性质,提出一种两者相互转化的新算法,既保证了曲线与实际的一致,又减少了计算的维数。
3.
Also, an expression formula for this analytical function is obtained.
考虑四阶方程(Δ2x- Δ2y)u= 0, 我们得到解的中量M(r,s)与M(s,r)的差是一解析函数, 并且得到了解析函数的表达式, 作为推论, 得到了著名的Asgeirsson 中量定理。
6)  analytic functions
解析函数
1.
A subclass of p-valent analytic functions defined by Ruscheweyh derivatives;
用Ruscheweyh导数定义的一类p叶解析函数
2.
On a subclass of analytic functions with negative coefficients;
关于负系数解析函数的一个子类
3.
Properties of analytic functions defined by Noor integral operator;
由Noor积分算子定义的解析函数的性质
补充资料:Banach解析空间


Banach解析空间
Banach analytic space

  析映射U~G的芽的层对形式为x~毋(x)f(x)的映射的芽的子层的商,其中卿U~Hom(F,G)是局部解析映射,而O(W)C小(G)是由在W中取值的映射生成的.层集中(W)定义了由E冶1犯比空间的开集及其解析映射的范畴K到f一’(0)上的集合的层的范畴的函子. 一个拓扑空间X,如果具有从范畴K映到X中的集合(其中所有点有同构于某个局部模型的邻域)的层的范畴的函子,就称为压m朗h解析空间(Rm朗h analytjcs详戊). 复解析空间形成E以naeh解析空间范畴的一个完全子范畴,一个E匕朋‘h解析空间是有限维的,如果它的每一个点x有同构于这种模型产(U,F,f)的邻域,且存在映射g:U~U,它诱导出模型的一个自同构,且有完全连续的微分dg二(【11). 压m朗h解析空间的第二种特殊情形是B以比止h解析谁形(E以朋由anal沙n以‘儿ld),即局部同构于E以.队上空间的开集的解析空间一个重要例子是C上的Rm朗h空间的有闭余空间的闭线性子空间的流形. 亨枣呻窖的丘现朗h解衍卑(刨把勿一由助月E以na比出皿lytics比),即形式为召(U,口,f)的模型,具有类似于经典性质的局部性质:原始分解,Hilbert零点定理,局部描述定理,等等,都是可应用的([2]).山皿dl解析空间!Ban汕analytic spa“,玩毗、,8oa“aJ“T“叨ecK0e nP0c1Pane一、Bo} 解析空间概念的无限维推广,‘白产生J对解析结构形变(〔le阮川刀atlon)的研究,这甩,局部模型是1至11长Icll解析集(Banaclla耐卯c set),即C「的山.山空间(即na山s禅ce)E的开集U的子集尸(U,八f)一f’(0),其中少仁 卜F是映到压川aeh空间F的解析映射(a耐 ytlctnaPPing).与有限维情形不同之处在于:在局部模型「.它没有给定一个结构层,似有一个层集小(体),其中体是任意Banaeh空间G中的开集这时,小(G)定义为解
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条