1) p-qasinipotent groups
p-拟幂零群
2) p-nilpotent group
p-幂零群
1.
C-supplement subgroups are used to study the p-nilpotency of finite group and obtain two sufficient conditions of p-nilpotent group of finite group.
利用子群的c-补性定义讨论了有限群的p-幂零性,得到了有限群为p-幂零群的两个充分条件。
2.
2,we consider some abelian subgroups whose centralizers are equal to its normalizers,so we obtain some sufficient conditions of p-nilpotent groups and p-closed group.
2,通过考虑某些交换子群的中心化子—致于正规化子,得到了p-幂零群和p-闭群的若干充分条件。
3.
By use of the s-conditonal permutability of certain 2-maximal subgroups of Sylow subgroups,the sufficient conditions which enable a finite group to be ap-nilpotent group are obtained;some of the known theorems are further generalized.
利用某些2-极大子群的s-条件置换性,得到了有限群是p-幂零群的充分条件;并推广了一些已知结果。
3) p-nilpotent groups
P-幂零群
1.
In this paper,it is obtained that some necessary and sufficient conditions for p-nilpotent groups by means of the quasi-c-normality of some subgroups of a group G.
利用拟c-正规的概念给出了p-幂零群的几个充要条件。
2.
This paper assumes that every non-cyclic Sylow subgroup P of G has a subgroup D such that 1<|D|<|P| and all subgroups H of P with order |H|=|D| and with 2|D|(if P is a non-abelian 2-group and |P:D|>2) are normally embedded in G,and some sufficient conditions are obtained on G to be p-nilpotent groups and supersolvable groups.
假设对于G的每个非循环Sylow子群P有一个子群D,使得1<|D|<|P|,且P的所有阶为|D|和2|D|(若P是非交换2-群且|P:D|>2)的子群H是G的正规嵌入子群,得到G为p-幂零群以及超可解群的一些充分条件,部分结果被推广到群系。
4) p-nilpotent
p-幂零群
1.
Some Sufficient Conditions of p-nilpotent Groups and p-closed Groups;
p-幂零群和p-闭群的若干充分条件
5) nilpotent p-group
幂零p-群
1.
Let G be a nilpotent p-group with finite rank, a andβbe two p-auto-morphisms of G, and write I = <(αβ(g))(βα(g))-1)|g∈G>, then (i) In case I is a finite cyclic group, a andβgenerate a finite p-group.
设G是一个有限秩的幂零p-群,α和β是G的两个p-自同构,记I= ((αβ(g))(βα(g))-1)|g∈G),则(i)当I是有限循环群时,α和β生成一个有限P-群; (ii)当I是拟循环p-群时,α和β生成一个可解的剩余有限P-群,它是有限生成的无挠幂零群被有限p-群的扩张。
6) p-nilpotent groups
p幂零群
补充资料:幂零半群
幂零半群
ralpotent semi-group
幂零半群[司脚触吐涨”‘一沙叨p;。,二‘noTeoT皿明。o几犷-pyn“a] 具有零元的半群(~一脚uP)S,且存在n使得罗=0.这等价于S中的恒等式 xl”‘x。二yl‘’‘y。·对于给定的半群,满足上述性质的最小的n称为幂零级(stePof司potency)或幂零类(cla义of汕potency).如果S’=O,则S称为具有零乘法的半群(se而一groupwith~甘山拓pliCa石on).下列关于半群S的条件等价:1)S是幂零的;2)5有一个有限零化子序列(即一个有限长度的升零化子序列,见诣零半群(nil semi一grouP));3)存在k使得S的每个子半群都可作为一个长度(k的理想序列被嵌人. 更为广泛的概念是Ma月H那B意义下的幂零半群(【2』).该名称指这样的半群,对于某个。,它满足恒等式 戈,Y。,其中字戈和Y。归纳地定义如下:X0=x,Y。=y,戈=戈一:u,Y。一,Y。=欢_lu。Xn_,,这里x,夕和“。,…,“。全是变量.一个群是Ma月玉u”B意义下的幂零半群,当且仅当它在通常群论意义下是幂零的(见幕零群(面训七以gro叩)),而恒等式戈=玖等价于这样的事实:该群的幕零类簇n.满足等式戈二Y。的消去半群可嵌人到一个满足同样等式的群中.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条