1) unknown function
未知函数
1.
By means of the conditions of total differential equation,in this paper are given the integral factor and general solution of one kind of differential equation and are obtained the differential equations that satisfy the unknown functions in some of total differential equations, thus are found the unknown functions and their general solutions.
利用全微分方程的条件 ,给出一类微分方程的积分因子及通解公式 ,得出几类全微分方程中未知函数所满足的微分方程 ,获得未知函数及全微分方程的通
2.
In this paper, using the linear substitution of unknown function, obtains a nec-essary and sufficient condition for three order linear homogeneous differential equation with variable coefficients to be three order linear differential equation with constant coefficients.
运用未知函数的线性变换,获得三阶变系数线性齐次微分方程化为三阶常系数线性微分方程的一个充要条件。
3.
The estimation of unknown function in a class of integro-sum inequalities has been proved by inductive approach and methodology of inequalities.
利用数学归纳法和不等式技巧证明一个已知的积分和不等式中未知函数的估计式成立。
2) unascertained function
未确知函数
1.
Expectation of unascertained function and its application;
未确知函数的期望及其应用
2.
Then the concept of the unascertained sequence Of number and the general unascertained function limit are given on the basis of the concept of the unascertained distance, finally the law of limit operation is established.
本文在未确知集合中定义未确知距离,由此建立未确知空间概念,在未确知距离概念基础上定义未确知数列和一般未确知函数极限概念,并且建立极限的运算法则。
3.
Conception and subtraction operations of the unascertained functions and some applied examples are given.
利用所定义的未确知函数的概念来表示某些信息 ,它推广了文〔1〕中有关概念 ,包含了连续型随机变量的表示。
3) Transformation of dependent variable
未知函数的变换
4) extension unascertained function
延拓未确知函数
5) unascertained set function
未确知集函数
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条