1) the stein tensor field
应变张量场
1.
In this paper, We define the lift g of Finsler metrics g in the manifold M to the T(M), also we introduce the stein tensor field S for the general Finsler connection FG, and prove that, the factors of N-decomposition all are p-homogenity.
本文以最一般的方式定义了流形M上Finsler度量g在T(M)上的提升g,又引进对一般的Finsler联络FG而言的应变张量场S,并证明了它的所有N-分解因子全是正齐次的。
2) strain tensor
应变张量
1.
A note on the accurate expression of strain tensor;
关于壳体有限变形的准确应变张量表达式的一点注记
2.
The influences of deformation and Poisson ratio on the volume ratio under different strain tensor descriptions are studied.
对不同应变张量描述下的体积比受变形程度及泊松比的影响进行了分析,结果表明:在La-grangian应变张量与Almansi应变张量及Eulerian应变张量描述下,假定泊松比不变,大变形时都会出现体积变化反常的现象;在对数应变张量描述下,当泊松比取值0。
3.
The expressions of the Lagrangian-Green strain tensor and the Eulerian strain tensor and their work-conjugate stress tensors,namely,the second Piola-Kirchhoff stress tensor and Cauchy stress tensor,are derived for the beam under axial uniformly tension,and the constitutive relations of these two pairs of work-conjugate stress and strain measures are also presented.
推导了轴向均匀大变形等截面杆的Lagrangian-Green应变张量和Eulerian应变张量以及分别与它们能量共轭的第二类Piola-Kirchhoff应力张量和Cauchy应力张量的表达式,给出了这2对能量共轭的应力应变张量的本构关系式。
3) field of stress tensor
应力张量场
4) field stress tensor
场应力张量
5) deformable tensor field
形变张量场
6) covariant tensor field
共变张量场
补充资料:偏应变速率张量
偏应变速率张量
deviator strain rate tensor
P lonyingbion suIU zhongl旧ng偏应变速率张量(deviator strain ratetensor)从应变速率张量中扣除球应变速率张量所剩余的应变速率张量。偏应变速率张量是二阶对称张量,它具有二阶对称张量的一切性质。偏应变速率张量可表示成 f后,.云、,云,,飞(后,一云_云、_云__飞截,~}肠心肠}一!‘,几一‘,气f L气忿£,ez)L几二£〕心气一几)对于主应变状态,偏应变速率张量为 {已、00)f云1一式00) ev,一10的O}~}oc:一几O} L 00£,3 J t 00£3一气{偏应变速率张量也存在三个张量不变量,其表达形式与偏应变张量的不变量相同,即表达式中以偏应变道率分量代替偏应变分量。 (王振范)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条