1) Weakly left quasi-regular element
弱左拟正则元
2) left quasi-regular element
左拟正则元素
3) left weakly regular
弱左正则
1.
In this paper,we introduce the notion of left weakly regular semigroup and show that in a commutative semigroup,the complete regularity,regularity,left(resp.
介绍弱左正则幺半群的概念,指出在可交换半群中,完全正则、弱左(右)正则和完全幂等是等价的。
4) weakly quasi-regular H-left ideal
弱拟正则H左理想
5) Weakly quasi-regular graded left ideal
弱拟正则分次左理想
6) left quasi-regular
左拟正则
补充资料:正则元
正则元
regular ekment
【补注】完全由正则元组成的半群称为正则半群(优即-址s。”i一g。印).石生明译王杰校正则元[犯,面e触””吐;pery刀”p”诫,二eMenT),半群的 一个元素a,有给定半群的某元素x使得a二axa;若附加地还有ax=xa(对同一个x),则a称为完全正则的(colrlPlete坦叨】ar).设a是半群S的正则元,则S中由a生成的主右(左)理想可由某幂等元生成;反之,这些对称的性质的每一个都蕴涵a的正则性.若aba=a及b“b=b,则元素a及b称为互逆的(mut毯沮y~rse)(亦称为广义逆的(罗-nerali江月~rse)或正则共扼的(比即玩conj火笋记)).每个正则元皆有逆于它的元素;一般说来,它不是唯一的(见逆半群(mversion~一g皿p)).任意两个元素皆互逆的半群实际上是矩形半群(见幂等元的半群(ideTr甲以ents,~一grouPof)).每个完全正则元皆有一个与它交换的元素逆于它.一个元素是完全正则的,当且仅当它属于半群的某个子群(见Clif-i议旧半群(C五ffO心~一gro叩”.对正则少类,见Gre.等价关系(Gn笼11叫ulVd卜nce rehtions).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条