1) The uncountability of real number set
实数集合不可数性
2) Uncountable infinite set
不可数无穷集合
3) uncountable set
不可数集
4) real number set
实数集合
1.
Through a new analysis on the essential relationship between Russell’s Paradox and Cantor’s proof on the uncountability of real number set and the proof on the Cantor’s Theorem of S< P(S) , a mysterious error was found:the very same logic contradiction was applied in both Russell and Cantor’s work.
分析了罗素悖论与康托的实数集合不可数证明及康托定理S
5) denumerable set
可数集合
6) uncountability
不可数性
1.
The paper introduces several important notions such as uncountability and halting problem firstly,the fact is proved by contradiction that halting problem is impossible problem,and the same to other relative issues in computer is proved by reduction.
本文先介绍了不可数性和停机问题等重要概念,用反证法证明了停机问题是不可解的,并使用归约法对计算机中的相关问题的不可解性进行了证明。
补充资料:不可数集
不可数集
uncountable set
不可数集[毗姗ta城set;。ee,eTooeM。二ecTao] 不可数(countable)的无穷集,即它不与自然数集等势.例如,实数集是不可数的,而有理数集是可数的.M.H.Bo枷exoBcK浦撰【补注】在文献中,“可数集”有时指“有限或可数无穷集”,有时指“可数无穷集”. 实数集的不可数性可由Cantor对角线化原理(Cantor diagonaliza石on PnnciPle)证明(见Cantor定理(Cantor thcor助)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条