1) Pad polynomial
Pad啨多项式
1.
The influences of the interval for the coupling constant values and the order of Pad polynomial are analyzed.
分析了耦合常数的取值区间和Pad啨多项式阶数对计算结果的影响 。
2) Poincaré polynomial
Poincar啨多项式
1.
The signed complementary graphic arrangements A ∑K n with n<7 vertices were classified under π equivalence, and the Poincaré polynomials of their representatives were worked out by this algorithm.
用此算法对顶点数小于 7的带号完全n点形图构形做了π 分类 ,计算了各类的Poincar啨多项式詈?,给出猜想“带号完全n点形的相反图构形A(G)是不自由的 ,则完全n点形图构形A(G)是自由的”的一个反
3) Padé approximation
Pad啨逼近
1.
The rational fraction approximation is introduced by fraction series, and the existing principle of Padé approximation is given at the same time, and soleness principle, in combination with the knowledge of the linear algebra, the resolution of the linear system of equations, the features of determinate, and so on, this article gives the strict evidence.
通过函数的Taylor级数引出其有理分式逼近 ,同时给出了Pad啨逼近的存在定理 ,以及惟一定理 ,并结合线性代数知识、线性方程组、行列式的性质等 ,给出了严格的证明。
4) Padé via Lanczos (PVL)
Pad啨逼近/Lanczos分解
5) matrix Padé approximants
矩阵Pad啨逼近
6) polynomials/chromatic polynomials
多项式/色多项式
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。