1) primal variational formulation
原始变分形式
1.
Based on the primal variational formulation and dual mixed variational formulation, two numerical methods are introduced for an unilateral beaming problem, the Uzawa type algorithm resolving discrete dual mixed variational formulation is presented here.
本文分别基于原始变分形式与对偶混合变分形式,对一类单边约束问题进行了数值求解,提出了求解离散对偶混合变分问题的Uzawa型算法,并用数值例子验证了算法的有效性。
2) primitive form
原始形式
1.
His brutal nature is just the primitive form of human nature and he is half-human,the natu.
他的野性是人性的原始形式,而他是介于兽与人之间的“半人类”。
2.
So it can be said that the philosophy of Buddhism is the primitive form of Heidegger’s existentialism, and the latter is the modern expression of .
可以说,禅宗哲学是海德格尔存在主义思想的原始形式,海德格尔思想是东方远古人生智慧的现代表达。
3) iginal character form
原始字符形式
4) the original-variable formulation of Navier-Stokes equation
原始变量形式的Navier-Stokes方程
5) variational form
变分形式
1.
This paper presents a kind of local nonconforming finite element method to solve a new variational form,with a penalty term included,of stationary stokes equations.
考虑定常Stokes方程的一种带惩罚项的变分形式,用局部非协调有限元求解,从而解决了这种变分形式在三维空间上不能应用于光滑区域的问题,并且得到了在本文所定义的范数意义下的最优误差估计。
6) primary morphology
原始形貌
补充资料:变分原理(复变函数论中的)
变分原理(复变函数论中的)
omplex function theory) variational principles (in
f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条