1) Lipschizian strongly pseudocontractive mapping
Lipschitz强伪压缩映象
1.
Let X be a closed subspace of a real Banach space E , and T:X→X be a Lipschizian strongly pseudocontractive mapping with fixed point x~* .
设X是实Banach空间E的闭子空间,T:X→X是Lipschitz强伪压缩映象,x*为T的不动点。
2) Lipschitz strongly pseudocontractive mappings
Lipschitz强伪压缩映射
3) Lipschitz strictly pseudocontractive mapping
Lipschitz严格伪压缩映象
1.
Let K be a closed convex subset of an arbitrary real Banach space X,and T ∶K→K be a Lipschitz strictly pseudocontractive mapping such that Tx=x for some x∈X.
设K是任意实Banach空间X中的闭凸子集,T∶K→K是Lipschitz严格伪压缩映象,在没有假设∑n=0∞αnβn<∞之下,本文证明了由xn+1=(1-αn)xn+αnTyn+un与yn=(1-βn)xn+βnTxn+vn,n∈N,生成的带误差的Ishikawa迭代序列强收敛到T的唯一不动点,并给出了更为一般的收敛率估计:若un=vn=0,n∈N,则有‖xn+1-x*‖≤(1-γn)‖xn-x*‖≤…≤∏j=0n(1-γj)‖x0-x*‖,其中{γn}是(0,1)中的序列,满足γn≥1/(1+k)min(ε,η-ε)αn。
4) strongly pseudocontractive mapping
强伪压缩映象
1.
It is to study the stability problem of the Ishikawa iteration procedure with errors for strongly pseudocontractive mapping.
在实Banach空间中 ,研究了强伪压缩映象和含强增生映象A的非线性方程Ax =f的具误差的Ishikawa迭代序列的一类新的稳定性问题 ,所得结果改进和发展了近期的相关结
5) Strongly Pseudo-contractive Mappings
强伪压缩映象
1.
Iterative Approximation for Common Fixed Points of Finite Strongly Pseudo-contractive Mappings in Banach Spaces;
迭代逼近Banach空间中有限个强伪压缩映象的公共不动点
2.
Iterative Approximation for Fixed Points of Strongly Pseudo-contractive Mappings in Banach Spaces;
迭代逼近Banach空间中强伪压缩映象的不动点
3.
By using analytic techniques,problem of Ishikawa and Mann iterative sequence approximations for Lipschitz φ-hemicontractive mappings in general Banach space is studied,which extends corresponding results of iterative approximations of fixed points for Lipschitz strongly pseudo-contractive mappings to φ-hemi-contractive mappings.
使用分析的技巧,在实Banach空间中研究φ-半压缩映象具有Lipschitz不动点的Ishikawa和Mann迭代的逼近问题,将Lipschitz强伪压缩映象不动点Mann迭代和Ishikawa迭代的相关结果,扩展到了φ-半压缩映象类,并提供了更为一般的收敛率的估计。
6) Φ-strongly pseudo-contractive mappings
Φ-强伪压缩映象
1.
This article studys Ishikawa and Man interative of revise approximation problem of solutions and fixed points for Φ-strongly accretive and Φ-strongly pseudo-contractive mappings in general Banach spaces,and generalizes the condition from smooth spaces to arbitrary Banach spaces.
在一般Banach空间中研究了Φ-强增生映象方程解和Φ-强伪压缩映象不动点的修改的Ishikawa迭代逼近。
补充资料:映象
客观事物在人的头脑中以感觉、观念或思想等形式的再现。是客观事物作用于人脑和人脑进行反映活动的结果。实践是客观事物映象的来源。人脑中关于客观事物的映象,都是在具体实践条件下,人脑对客观事物的近似正确的或错误的反映。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条