1) weakly invariant measure
弱不变测度
1.
The concept of weakly invariant measure of single chain X→ is firstly put forward.
讨论了随机环境马氏链中具有强π-不可约性链的常返性的判定,从而得到了强π-不可约链常返性判定的充分必要条件,同时首次提出了关于单链X→的弱不变测度的概念。
2) weakly quasi-invariant measure space
弱拟不变测度空间
3) Invariant measure
不变测度
1.
The invariant measures of a continuous flow with the specification property;
具有specification性质的连续流的不变测度
2.
The properties of invariant measure on Ψ-irreducibility of random environments markov chain
随机环境马氏链的Ψ一不可约下不变测度性质
3.
A Note to the Frobenius-Perron operator and invariant measure
关于Frobenius-Perron算子、不变测度的一点注记
4) the method of invariant measure
不变测度法
1.
Considering the integrality of polynomial systems,this paper describes the method of invariant measure or rational first integral of the polynomial system and it has been applied to homogeneous Lotka-Volterra system and homogeneous May-Leonard system.
本文考虑多项式系统的可积性,给出寻找多项式系统的多项式首次积分或有理首次积分的不变测度法,并应用于齐次Lotka-Volterra系统和齐次May-Leonard系统。
5) letf invariant measure
左不变测度
6) μ-invariant measure
μ-不变测度
1.
As is known to all,μ-invariant measure plays an important role in stochastic pro-cess,and the research of that is significant both in theory and practice.
众所周知,μ-不变测度是随机过程中-类重要的测度,对μ-不变测度的研究无论在理论上还是在应用中,都十分重要。
2.
In this paper,the author discusses the question that when there is a q-process P(t),such that π which is the μ-invariant measure of a given q-pair containing absorb states,is the μ-invariant measure of P(t),and two necessary and sufficient conditions are obtained.
本文对给了全稳定含吸收态的q-对的μ-不变测度,何时存在q-过程P(t),使得π是P(t)的μ-不变测度的问题进行了讨论研究,并给出了两个充要条件。
补充资料:概率测度的弱收敛
概率测度的弱收敛
eak convergence of probability measores
【补注】概率测度弱收敛的一般背景是在完全可分度虽空间(n犯川C sPace)(X,p)(亦见完全空间(comP-letesPace);可分空间(sep娜blesP毗))上讨论的,p是距离,具有定义在X的BOrel子集上的概率测度召。,n二O,l,,…如果对定义在X上的每个有界连续函数f,当。~二时,有Jfd产。~了fd拜。,则称拜,弱收敛到产。.如果在X中取值的随机变量氦的分布是拜。,n=o,l,…,如果拼。弱收敛到群。就写作省。人‘。,并且称七。依分布收敛到么,(亦见依分布收敛(①n凭r罗nCe in dis苗bution)). 在概率论中使用最普通的距离空间是k维Euclide空间Rk,〔0,l]上连续函数空间C[0,11以及在仁O,11上右连续具有左极限的函数空间Dto,1]. 更为丰富的距离空间中的弱收敛比在Eucljd空间中的用处大得多.这是因为在R’中依分布收敛的各种各样的结果可由它借助于连续映射定理(conti-nuo璐maPping tl篮幻哪)导出.该定理说,如果在(x,,)中着。二‘。且映射儿:x~R是连续的(或至少是可测的,且P(尝。6D*)二O,其中D*是h的不连续点集),则h(亡。)‘h(省。).在许多应用中极限随机元是Bro”.运动(Bro认们坦n mot」on),它以概率1具有连续轨道. 最基本的弱收敛结果之一是关于和s。=艺夕_:x.,n)1,的L心璐ker定理(功nsker tll印reTn),其中戈是具有EX:=0,EX)‘1,i=1,2,…,的独立同分布随机变量.可以这样来陈述其轮廓:在C【O,l]中,令S。=o,S。(t)二n一”,{SL。:l+(nt一[nt])·戈。t〕+、},o(t(l,其中卜]表示x的整数部分,则功挑ker定理断言s。(t)车w(t),其中w(t)是标准Brown运动.应用连续映射定理很容易提供对诸如~1、*‘。S*,max,、*‘。k一”2 15*l,艺又_:了(S*)。)和艺二_,:(s、,s*+1)等函数的依分布收敛结果,其中I是示性函数而下(“,b)=l,如ab<仇=0,其他.概率测度的弱收敛【W.山。皿到曰岁翔沈of声触晒ty~-,.留;c“浦aa cxo口”Moc、解妙~oc珊0益Me伽]
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条