1) pseudo-Lipschitz property
伪李普希兹性质
2) Lipschitz nonlinearity
李普希兹非线性
3) Lipschitz pseudocontractive mappings
李普希兹伪压缩映射
1.
We study the iterative approximation problem of fixed point for a finite family of Lipschitz pseudocontractive mappings.
研究了Banach空间中有限个李普希兹伪压缩映射近迫点序列的收敛性问题,此结果推广了以前的结论。
4) Non-Lipschitz
非李普希兹
1.
A Class of Stochastic Different Equations with Non-Lipschitz Cofficients
一族非李普希兹系数的随机微分方程
5) partial Lipschitz continuity
偏李普希兹连续性
6) Lipschitz optimization
李普希兹优化
1.
In this paper,a branch-and-bound algorithm for Lipschitz optimization with box constraints is studied.
研究箱约束李普希兹优化问题的分支定界算法。
补充资料:李普希茨,R.(O.S.)
德国数学家。1832年 5月14日生于柯尼斯堡(今苏联加里宁格勒),1903年10月7日卒于波恩。1847年入柯尼斯堡大学,1853年获柏林大学博士学位,1864年起任波恩大学教授。先后当选为巴黎、柏林、格丁根、罗马等科学院的通讯院士。
李普希茨的数学研究涉及数论、贝塞尔函数论、傅里叶级数论、常微分方程、分析力学、位势理论及黎曼微分几何,其中在微分方程和微分几何方面尤为突出。1873年他对 A.-L.柯西提出的微分方程初值问题解的存在惟一性定理作出改进,提出著名的"李普希茨条件"。存在性定理的证明有力地推进了对微分方程定性理论以及解的近似计算的研究。
李普希茨被认为是(G.F.)B.黎曼事业的继承者之一。黎曼于1854年系统地阐述了高维流形微分几何的主要内容,并于1868年发表了研究 n维流形的度量结构的文章。1869年起李普希茨对黎曼的思想作出进一步阐述和推广,其中对 n维黎曼流形的子流形性质以及对微分不变量的研究,取得了开创性的成果。他还是最早使用共变微分研究微分不变量的人,这个概念后来被G.里奇有效地用于张量分析。
李普希茨的数学研究涉及数论、贝塞尔函数论、傅里叶级数论、常微分方程、分析力学、位势理论及黎曼微分几何,其中在微分方程和微分几何方面尤为突出。1873年他对 A.-L.柯西提出的微分方程初值问题解的存在惟一性定理作出改进,提出著名的"李普希茨条件"。存在性定理的证明有力地推进了对微分方程定性理论以及解的近似计算的研究。
李普希茨被认为是(G.F.)B.黎曼事业的继承者之一。黎曼于1854年系统地阐述了高维流形微分几何的主要内容,并于1868年发表了研究 n维流形的度量结构的文章。1869年起李普希茨对黎曼的思想作出进一步阐述和推广,其中对 n维黎曼流形的子流形性质以及对微分不变量的研究,取得了开创性的成果。他还是最早使用共变微分研究微分不变量的人,这个概念后来被G.里奇有效地用于张量分析。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条