1) r-strong semi-closed sets
r强半闭集
1.
In this paper,we define r-strong semi-open sets,r-strong semi-closed sets and other strong forms of sets in L smooth topological spaces,and discuss and introduce the relationships among them.
在L光滑拓扑空间中给出了L光滑r强半开集,r强半闭集等概念和它们的一些基本性质。
2) L-smooth semi-closed sets
r-半闭集
1.
In this paper we introduce L-smooth semi -open and L-smooth semi-closed sets in an L-smooth topological space in view of the definition of A.
Sostak给出的L-smooth拓扑空间中,定义r-内部与r-闭包,r-半开集与r-半闭集,研究了它们的一些基本性质。
3) r-strong semi-closure
r-强半闭包
1.
sr-connectedness is introduced by means of r-strong semi-closure in L-smooth topological spaces.
在L-光滑拓扑空间中借助于r-强半闭包引入了sr-连通性,讨论了sr-连通性的若干等价刻画。
4) Strongly Semiclosed Set
强半闭集
5) r-strong semi-open sets
r强半开集
1.
In this paper,we define r-strong semi-open sets,r-strong semi-closed sets and other strong forms of sets in L smooth topological spaces,and discuss and introduce the relationships among them.
在L光滑拓扑空间中给出了L光滑r强半开集,r强半闭集等概念和它们的一些基本性质。
6) strongly semi-preclosed sets
强半准闭集
1.
With the help of the strongly semi-preclosed sets, the concept of Ⅱ type of connectivity in L-topological spaces is intruced.
利用强半准闭集引入了L-拓扑空间中的Ⅱ型强连通性概念,它保持了一般拓扑空间连通集的若干重要性质。
补充资料:闭集
闭集
dosed set
闭集ld吹d肥t买姗.叮l说M“馏ec佃],拓扑空间中的 含有它的所有极限点〔见集合的极限点(】imjtpolnt of a set)、的集合.于是,闭集的补集的所有点都是内点,所以闭集可定义为开集的补集.闭集的概念是把拓扑空间定义为具有满足下列公理的特定集合系统〔所谓闭集)的作空集X的基础:X本身和空集是闭集;任意个闭集的交是闭集;有限个闭集的并是闭集.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条