说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 严格不等式
1)  strict inequality
严格不等式
1.
Applying properties of Hadamard core for totally nonnegative matrices, we give a sufficient condition that the lower bound estimation of the determinent of Hadamard product of two nonsigular tridiagonal totally nonnegative matries satisfy Schur-Oppenheim strict inequality, and improve the corresponding results on tridiagonal oscillating matrices obtained by T.
应用完全非负矩阵的 Hadamard中心的性质 ,给出了非奇异三对角完全非负矩阵的Hadamard乘积的行列式的下界估计满足 Schur- Oppenheim严格不等式的充分条件 ,改进了 T。
2)  strict linear matrix inequality
严格线性矩阵不等式
1.
By virtue of strict linear matrix inequality, we derive new bounded real lemma on the basis of the H2 control for continuous singular system that is regular, impulse free, stable and H2 performance.
利用严格线性矩阵不等式的方法,获得了奇异系统H2控制的新的有界实引理,保证了奇异系统的正则性、稳定性、无脉冲性及H2性能。
3)  Linear System of Strict Inequalities
严格线性不等式组
1.
A Solution for a Kind of Linear System of Strict Inequalities;
一类严格线性不等式组的解法
4)  Strict δ-Equality
模糊集的严格δ-等式
5)  relaxed [英][rɪ'lækst]  [美][rɪ'lækst]
不严格的
6)  non-rigorousness
不严格
1.
In fact,plenty of archeological data proves the non-rigorousness of taboo of emperor’s name in the earlier period of the Western Han Dynasty.
其实,诸多考古资料证明秦国到西汉前期避君主名并不严格,因此,不应该以是与否回避某君主之名,作为判定某地下发掘实物是与不是哪时代物品的标志。
补充资料:Harnack不等式(对偶Harnack不等式)


Harnack不等式(对偶Harnack不等式)
quality (dual Hatnack inequality) Harnack in-

【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条