说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Cauchy型插值函数
1)  interpolation function of Cauchy type
Cauchy型插值函数
2)  Cauchy mean value function
Cauchy中值函数
1.
Based on this, the definition of Cauchy mean value function is given in this paper.
文献[2~6]对微分中值定理“中间点”的渐近性质进行了研究,本文在此基础上,给出了“Cauchy中值函数”的定义,对Cauchy中值函数的分析性质进行了系统的综合讨论,证明了Cauchy中值函数的单调性、可积性、连续性、可微性等分析性质。
3)  interpolating vibration mode function
插值振型函数
1.
According to Hamilton Principle, the interpolating vibration mode function is proposed to study the dynamic response of vehicle-bridge coupling Vibration under the moving load.
根据哈密顿原理,提出了应用插值振型函数法,研究多跨连续梁在移动荷载作用下车桥耦合振动的动态响应问题。
4)  fitting beam mode function
插值振型函数法
5)  Cauchy's functional equation
Cauchy型函数方程
6)  Interpolation function
插值函数
1.
Integration of fractal interpolation functions on various scales;
不同尺度下分形插值函数的积分
2.
Establishment of multi-fields in MSC Patran by interpolation functions of Matlab;
MSC Patran中基于Matlab插值函数的多场创建
3.
Some properties of a fractal interpolation function;
一种分形插值函数的若干性质
补充资料:Bessel插值公式


Bessel插值公式
Bessel interpolation formula

  十户,业匕生二匕二上业业二且+ ’7’/“(2陀)! 十户划卫二业三卫上塑二止逛卫业二业且, ‘J’/之(Zn+l)!与Gauss公式(l),(2)相比,Bessel插值公式具有某些优点;特别是,如果在区间的中点,即在点t=1/2上插值,则一切奇数阶差分的系数都等于零.如果把公式(3)右边最后一项略去,则所得到的多项式凡,十1(x0十th)虽然不是一个适当的插值多项式(它仅在Zn个结点xo一伍一 l)h,…,x。十从上等于f(x》,但是给出了比同次插值多项式更好的余项估计(见播值公式(interpolatlon扔皿ula)).例如,如果x二x0十th6(x。,xl),则使用关于结点x0一h,x。,x。十h,x。+Zh写出的最常用的多项式 。;‘x‘、+,、、_一、:,,、。,,},一工{、尸,,,业止卫. 一扒‘。’‘”‘一”/2’了’/’UZ}’了’‘’几得到的余项估计,比关于结点x。一h,x。,x。,h或x。,x。+h,x。+2h写出的插值多项式给出的估计几乎要好8倍.Bessel插值公式{肠份哭1 intellx面位用肠nll山反二e”“ItI℃Pn创扭”“o“”即中叩M扒a} 作为Gauss前位]插值公式与同阶的(j:,us、后“,J括值公式(见‘;auss插值公式(Gauss Interp‘)xa[;、)11 folmtlla))之和的半而得到的公式,旋于结点卜,丫。}h.丫。h,I。·“h,丫川,.丫川,l)/7的Gaus、前向插值公式为:八一点工二戈+111卜 (,,十,帆叮h)州·川、、少不一(l) 刃+口(l、l)叮启) (2,:+1)’关f一结点丫。二戈汁h即关J结点玩,h一、、,、Zh一丫。卜h‘、从曰”!泊,、月h的同阶的Causs后向插值公式为‘·:、‘、r一、·,::、了{卜、业示过· ‘,今、、三性二i上二_上二_塑_业工__妇匕__“__土 /l/2飞,卜, “,‘一”(2) 设 (声扮石‘) 一厂冷二一下一一Bessel插值公式取下列形式([l},口1) BZ十:(一‘.“h)(3) 、一、/:{,一井片/少沪 ’/一{2}’一2’
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条