1) Stuart-Landau equation
Stuart-Landau方程
2) Stuart-Landau system
Stuart-Landau系统
3) Ginzburg-Landau equation
Ginzburg-landau方程
1.
The existence of global solution of complex Ginzburg-Landau equation;
复Ginzburg-landau方程整体解的存在性
2.
The fractal structure of attractor for complex Ginzburg-Landau equation in three-dimensions;
三维Ginzburg-Landau方程的吸引子的分形结构(英文)
3.
Analytical self-similar solutions of Ginzburg-Landau equation for the dispersion decreasing fiber;
色散渐减光纤中Ginzburg-Landau方程的自相似脉冲演化的解析解
4) Landau-Lifshitz equation
Landau-Lifshitz方程
1.
Using the Landau-Lifshitz equation,the propagating of spin wave in metallic magnetic stripe has been investigated,in which the effective boundary condition is applied for the dynamic magnetization of the metallic magnetic strip.
运用Landau-Lifshitz方程,边界处动态磁化强度由有效偶极边界条件约束,研究了无限长金属磁条中自旋波传播的特征,得到了该体系抽运微波磁场的阈值曲线以及色散曲线的解析式,揭示出自旋波激发谱与磁条宽度的具体关系。
2.
We apply Lie group method and Cayley transformation to construct high order explicit square conserving scheme for the modulus conserving differential equations, such as the Euler equation, the Landau-Lifshitz equation and compare the numerical results with the classical Runge-Kutta method in modulus conserving and accuracy.
我们利用李群算法和Cayley变换构造了高阶显式平方守恒格式,应用到模守恒的微分方程如Euler方程,Landau-Lifshitz方程,并且与相同阶的显式Runge-Kutta方法在保模守恒和精度方面进行了比较,数值结果表明用李群算法构造的新的显式平方守恒格式能保微分方程模守恒的特性且它和相应Runge-Kutta方法有相同的精度。
3.
In this paper, the Landau-Lifshitz equation of ferromagentic chain systems is considered which is related to p-Laplacc operator, its solution from a m-dim compact manifold M(without hour dary) into the unit sphere S2 of R3 is shown; Sornc links between p --harmonicmaps and its solution are also established.
研究了与P-Laplace算子对映的铁磁链系统的Landau-Lifshitz方程,证明了该方程的从m(m≥3)维紧流形M(不带边界)映射到R3中的单位球面S2上的整体弱解的存在性;建立了p-调和映射理论与该方程的联系。
6) Landau-Lifschitz equation
Landau-Lifschitz方程
1.
The Hamiltonian theory of Landau-Lifschitz equation and the gauge transformations;
对完全各向同性Heisenberg铁磁链的Landau-Lifschitz方程的Hamilton理论建立中 ,Hamilton量的坐标积分和谱参数积分两种表示式不能协调地从单一守恒量导出的问题 ,利用规范变换完善地解决了 。
补充资料:Stuart model
分子式:
CAS号:
性质:又称比例模型(proportional model)。是一种按原子与原子间成键的共价半径成比例放大做成的分子模型。特点是比较真实,但原子间的价键却难看清。
CAS号:
性质:又称比例模型(proportional model)。是一种按原子与原子间成键的共价半径成比例放大做成的分子模型。特点是比较真实,但原子间的价键却难看清。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条