1) near (compact) K uniform smoothness
近(紧)K一致光滑
2) k-nearly uniformly smooth spaces
k接近一致光滑空间
3) K uniformly smooth
K一致光滑
1.
A new more general sufficient condition in quantitative form for a Banach space to be K uniformly smooth is given which generalizes the main result in [1].
给出Banach空间成为K一致光滑空间的一个新的更一般化的定量形式的充分条件,推广了文献[1]中的主要结果。
2.
Moreover,a sufficient conditon in quantitative form for a Banach space to be K uniformly smooth is obtained.
对Banach空间给出了一种K一致光滑性的概念,证明了它与K一致凸性具有对偶性,同时还给出Banach空间成为K一致光滑空间的一个定量形式的充分条件。
4) near(compact) K uniform convexity
近(紧)K一致凸
5) locally k-uniformly smooth
局部k一致光滑
6) k-uniformly extremely smooth
k一致极光滑
补充资料:胎紧浸入和套紧浸入
胎紧浸入和套紧浸入
tight and taut immersions
矍数) 图3 犷鳖{ 图4 称空间A CB的嵌人在Z:同调中为单射的(in-Jeetive),如果对于i)0,诱导同态万.(注,22)~H.(B,22)是单的.令HC=R“是R“中带有超平面边界aH的半空间.例如, H=H:(t)={x“R“:z’(x)簇r}.如果f是一个胎紧浸人,h:是一个非退化的高度函数,那么由Morse理论得到f一’(万:(r))C=M在22同调中是单的.于是由连续性,对任一半空间H这种单性都成立.对于闭流形的光滑浸人,这种半空间性质等价于胎紧性.然而,这种半空间定义也能应用于更大范围的从流形和其他紧拓扑空间到RN中的连续浸人或甚至是映射中去.一个例子是胎紧的“瑞士干酪”,它是一个带边的嵌人曲面,见图5.一个到R中的胎紧映射也称为一个完满函数(详rfect丘inction).公 图5今 图6 对于曲线和闭曲面,半空间性质可导出对任一半空间H,f一’(H)是连通的.它等价于R功ehoff两片性质(R朔chofft场。一pieee pro详rty),即R“中的任一超平面日H将M至多分割成两个连通的片,见图3和图4中的胎紧曲面和图2中的非胎紧曲线. 半空间定义将胎紧性置于经典几何学和凸性理论之中.由于胎紧性在RN中的任意将凸包才(f(M))映到RN内的射影变换下是不变的,因此胎紧性是一个射影性质(见射影几何学(projeetive罗。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条