说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 类谐振子
1)  harmonic-like oscillation
类谐振子
1.
On the relation between period and energy for the harmonic-like oscillation;
类谐振子的周期与能量的关系
2)  The Period of Anharmonic Oscillations
类谐振子的周期
3)  class E resonance
E类谐振
4)  quasi resonant oscillator
类谐振器
5)  Quesne-like ring-shaped harmonic oscillator potential
类Quesne环状球谐振子势
1.
A Quesne-like ring-shaped spherical harmonic oscillator potential is put foword and studied for spin 1/2 particles based on the Dirac equation, the Dirac Hamiltonian contains a scalar and a vector Quesne-like ring-shaped harmonic oscillator potentials.
提出了一种新的类Quesne环状球谐振子势,应用二分量方法求解1/2-自旋粒子满足的Dirac方程,Dirac哈密顿量由标量和矢量类Quesne环状球谐振子势构成。
6)  harmonic oscillators
谐振子
1.
From the viewpoint of wave mechanics,the interaction between the incident heat radiative wave and the damping harmonic oscillators in materials is analyzed to reveal the emission,absorption,transmission and reflection mechanism of incident heat radiative wave in materials.
从波动力学的观点出发,解析了热辐射波和材料内部的阻尼谐振子之间的相互作用过程,从而揭示了热辐射波在材料内部的发射、吸收、透射和反射机理。
2.
We use the perturbative method to derive master equation of the density matrix of a system composed of three coupled identical harmonic oscillators simultaneously interacting with a common environment.
本文推导了三个全同的谐振子系统与一个非马尔可夫库相互作用时满足的非马尔可夫主方程,并在此基础上讨论了系统的三模纠缠和压缩。
补充资料:谐振子


谐振子
oscillator, harmonic

[补注1 [A正1 Arnol‘d,V 1.,Mathe皿t:cal卿th。〔15 of classlcal rnCch翻cs,Spnnger,1978(译自俄文). 【AZ 1 Seh湃L .1.,Quantum毗chanies,McGraw一Hill, 1949、杜小杨译谐振子〔蝴锐场叙丫,har~;oe““朋:rop,r叩Mo““-”ec心“1 一个单自由度系统,其振动由方程 无+田Zx二0来描述.相轨道是圆,振动的周期T=2兀/o,与振幅无关.谐振子的位能依赖于x的平方: 。2叉2 U之立竺‘竺-, 一, 谐振子的一些例子是:摆的微小振动,固定在刚性不变的弹簧上的质点的振动,最简单的电子振荡电路.“谐振子”和“线性振子”常常作为同义词使用. 量子力学线性振子的振动由阳诚戏吃er方程(Sellr6dinger eq娜戒lon) h,d,沙」「_m。,Zx,1。 一三二一二六答口十}E一二兴井一.{少“O 2小dx‘L一2」了来描述.其中m是质点的质量,E是它的能量,h是Planck常数,。是频率.量子力学线性振子具有能级离散谱:E。=(n+l/2)h。,n=0,1,2,…;相应的本征函数可以由Her而te函数(Her而te fimction)来表示. “振子”这一术语适用于其运动带有振动特性的具有有限个自由度的(力学或物理)系统(例如,vdn derPol振子—表示处于位势为坐标的正定二次型的位势力场中的质点的振动的多维线性振子,见van妞Fbl方程(van der Pol equation)).对于“振子”甚至“线性振子”,显然都没有唯一的解释.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条