1) extreme value copula
极值Copula
1.
The Application of Timevarying Copula and Extreme Value Copula in the Security Market Risk Measurement
证券市场风险度量—时变Copula和极值Copula的应用研究
2) Extreme tail dependence copula
极尾相依copula
3) Co-copula
协copula
1.
Bounds of the Co-copula and its Properties;
协copula的界及其性质
4) extreme
[英][ɪk'stri:m] [美][ɪk'strim]
极值
1.
Binary implicit function Extreme Problems;
二元隐函数极值存在问题
2.
Extreme Statistics on the Application of Catastrophe Insurance;
极值统计在巨灾保险中的应用
5) extreme values
极值
1.
The rock bit diameter is calculated through determination of the extreme values with the calculation formula presented.
采用求极值来计算才轮钻头的直径,给出了牙轮钻头直径的计算公式,并分别对有移轴及无移轴牙轮钻头直径的计算进行了分析。
2.
Some methods of deciding the extreme values for the monadic functions and two-place functions were applied to decide the extreme values for the multivariate functions and then some effective methods of deciding the extreme values for the multivariate functions were presented.
将一元函数和二元函数极值的部分判别方法推广到多元函数极值的判别,提出了判定多元函数极值的几个方法。
3.
The extreme conditions for the monovariate functions were applied to the multivariate functions and then an effective method to decide the extreme values for the multivariate functions was presented.
将一元函数取极值的一阶充分条件推广到多元,提供了判定多元函数极值的1个有效方法。
6) extremum
[iks'tri:məm]
极值
1.
Estimation of chaos system parameters by using extremum point;
基于极值点的混沌系统参数估计方法及应用
2.
Calculation on transmission ratio extremum of grab operating mechanism based on Matlab;
基于Matlab的挖掘机工作装置传动比极值的计算
3.
A Generalization and Application of The Second Sufficient Condition of Judging Extremum;
极值第二充分条件的推广及应用
补充资料:Weierstrass条件(对变分极值的)
Weierstrass条件(对变分极值的)
eierstrass conditions (for a variational extremun
与 ,(,)一丁:(:,、(:),、(。))过:, ,‘! L:R xR”xR”~R,在极值曲线x;、(t)上达到一个强局部极小值,其必要条件是不等式 、(r,x。(r),又。(r),亡))o对所有的t,t。蕊t毛t、和所有的省任C”都满足,其中‘·是Weierstrass澎函数(Weierstrass吕J一几mC-tion).这条件可借助于函数 n(t,x,p,u)=(p,u)一L(t,x,u)来表示(见n0HTp“「“H最大值原理(Pont月闷gm~-mum pnnciple)).Weierstrass条件(在极值曲线x。(t)上六)0)等价于函数n(r,x.,(t),尸。(r),u)当“=交.,(r)在u上达到极大值,其中夕。(t)=L、(t,x。,(t),又。(t)).这样,Weierstrass必要条件是floH-Tp。朋最大值原理的特殊情形. Weierstrass充分条件(Weierstrasss川币eientcon-山tion):为了泛函 叭 ,(,)一丁:(:,、(。),*(。))、。, r‘- L:R xR”xR”一,R在向量函数x.,(t)上达到一个强局部极小值,其充分条件是在曲线x。(t)的一个邻域G中存在一个向量值场斜率函数U(t,x)(测地斜率)(见H皿祀rt不变积分(Hilbert invariant integral)),使得 交。(t)=U(t,x。(t))和 产(t,x,U(t,x),七))0对所有(t,x)〔G和任何向量亡6R”成立.【补注]对在极值曲线的隅角的必要条件,亦见Wei-erstrass一Erd”.un隅角条件(W匕ierstrass一Erdrnanncomer conditions).weierstrass条件(对变分极值的)[Weierstrass cOI公i-tions(for a varia垃翻目翻drelll.ll:Be滋eP山TPaccayc-月OBH,,KcTpeMyMa」 经典变分法中对强极值的必要和(部分地)充分条件(见变分学(variational cakulus)).由K .We卜erstrass于1879年提出. 节几ierstrass必要条件(Weierstrass neeessary con-dition):为使泛函
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条