1) analytic RN property
解析RN性质
2) RN property
RN性质
1.
In this case there exists an equivalent Frechet norm and LUR norm In this paper the relation of WCD property and RN property is studied.
现在,WCD性质与RN性质之间的关系将被进一步研究。
2.
In this paper,we discuss some relationships between the convergence of B-valued martingales with respect to complex measure and convexity,smoothness and RN property of Banach space.
讨论了B值复测度鞅的收敛性、Banach空间的光滑性和RN性质的一些关系。
3) RN-property
RN-性质
4) analytic property
解析性质
1.
Based on the analytic property of logistic growth curve,a method of solution parameters value of logistic is proposed and the feasibility of the process is analyzed and tested with an actual exampl
以逻辑增长曲线的解析性质为基础,给出逻辑增长曲线的一种参数估计方法,并结合了实例对其进行了分析与验证。
5) analytic Radon-Nikodym property
解析Radon-Nikodym性质
6) analysis of legal nature
法律性质解析
补充资料:解析函数的边界性质
解析函数的边界性质
oundary properties of analytic functions
解析函数的边界性质!b似.dan Pn,Pe币es of anal西c允n川侧;印翎If翎Mec叫沈1.aHaju盯r.,沈毗中)”眠”“引 解析函数在其定义域边界邻近的性质 解析函数边界性质的研究,就其最宽泛的意义上去理解,可以说始于有关解析函数在孤立本质奇点邻域内的性质的Co%.,翻.定理(Sokhotski不theorem)与巧口川定理(Pi以,、生theorem)(见本质奇点(essentla}sil飞 gular point)),这两个定理是在!9世纪的后半世纪得到的.有关解析函数边界性质研究方面的术语-一如今称之为素端理论和聚植集理论(见极限元(l一mlt elements-一首次出现r1 895年P .Paln-leve的一本教程「日P Fatou的学位沦文(1 906)就解析函数在其定义域之连续边界的邻域内的某些边界性质首次作了系统的研究在20世纪的前分之一世纪,由i些科学家的l作,边界性质理沦有J一引人注目的发展;在这个世纪的)l亏半世纪,随着新思想和新方法的出现,随着研究方向与目标的更新,边界性质理论又恢复f其妞速发展的势头.它的发展同数学分析及一般数学的许多领域都有密切联系,首先是概率沦,调和函数理沦,共形映射理沦,解析函数论的边值问题位势理论,值分布论R lemann曲面,次调和函数与函数代数.通过边值问题,解析函数的边界性质理论还同应用数学的许多领域有密切联系. 由于边界性质的研究首先同单复变量:的解析函数f(力的定义域l)的边界f的几何性态有关,在解析函数的边界性质理论中主要有三种不同的探讨. a)f(约在孤一边界点“6厂的邻域内的性质的研究.最重要的足a为本性奇点的情形,这方面有CoxOI职M“,Pl以r(i,Julla和Iverscn等人的定理(见Coxl班岁翻面定理(S()khotsk一;theorem);代。川定理(Pi。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条