说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 连分法
1)  continued fraction method
连分法
1.
Using the continued fraction method,we have obtained the exact energy eigenvalues of the Hamiltonian operator of the ion with potential V(r)=Z~2r~(-4)-d_1d_2r~(-3).
采用连分法,得到离子之间相互作用势为V(r)=Z2r-4-d1d2r-3的离子的Hamiltonian算符的精确能量本征值和能量本征函数。
2.
Using the continued fraction method, an analytic solution of the superposition potential with the power and the invers-power potentials V(r)=A1r6 +A2r2 +B2r-4 +B1r-6 has been obtained.
采用连分法得到了幂函数与逆幂函数V(r)=A1r6+A2r2+B2r-4+B1r-6的叠加势径向Schrodinger方程的 解析解。
3.
In this paper, using the continued fraction method1, we have obtained the exact solution of the radial schrdinger equation of the Isotropic Harmonic Oscillator for potentialV(r)=12μω2r2.
采用连分法[1,2,3],得到三维各向同性谐振子V(r)=12μω2r2势函数[4]径向Schr dinger方程的精确解。
2)  contimued method
连分方法
3)  continued fractions algorithm
连分数算法
1.
In this paper,based on continued fractions algorithm and branching-bounding algorithm,a new algorithm applied in cutting a long rectangular sheet into several sections is put forward.
本文结合连分数算法,采用分支定界原理提出了一种新的板材分割算法。
4)  continuous fraction method
连续分数法
1.
By means of the continuous fraction method, the author obtains the exact solutions of the Schrdinger equation with the potential V(r)=Ar -4 +Br -3 +Kr -1 , which express the interactions between ions and atoms.
采用连续分数法得到了表示原子、离子间相互作用势V(r) =Ar-4+Br-3 +Kr-1的Schr dinger方程的精确解 。
2.
By means of the continuous fraction method,an exact solution of the radial Schro¨dinger equation for the potential V(r)=α1r4+α2r+β3r-1+β2r-3+β1r-4is obtained.
采用连续分数法,得到势V(r)=α1r4+α2r+β3r-1+β2r-3+β1r-4的径向Schro¨dinger方程的解析解,并作适当的讨
3.
By means of the continuous fraction method,an exact solution of the radial Schrdinger equation for the potential V(r)=α 1r 10 +α 2r 4+α 3r 2+β 3r -4 +β 2r -6 +β 1r -10 is obtained here.
采用连续分数法,得到势函数V(r)=α1r10+α2r4+α3r2+β3r-4+β2r-6+β1r-10的径向Schr¨odinger方程的精确解。
5)  matrix continuous fraction method
矩阵连分法
1.
The stochastic dynamic model describing the air sea interaction is transformed into a Fokker Planck equation that is then solved by the matrix continuous fraction method.
将描写海温和气温交互作用的随机动力模式化为一个Fokker-Planck方程(FPE),然后用矩阵连分法进行求解,并对二氧化碳增温效应进行了计算。
6)  continuous process method
连续分步法
补充资料:比色分析法(见紫外—可见分光光度法)


比色分析法(见紫外—可见分光光度法)


  比色分析法见萦外一可见分光光度法。
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条