1) generalized difference Riccati equation
广义差分Riccati方程
1.
A generalized difference Riccati equation (GDRE) is introduced.
引人一个广义差分Riccati方程,证明了此方程的可解性是LQ问题存在最优控制的一个充分条件,并用方程的解给出了最优控制。
2) generalized differential Riccati equation
广义微分Riccati方程
3) generalized Riccati equation
广义Riccati方程
1.
On Integrability Conditions of Generalized Riccati Equation——To discuss about it with Mr.Zhao Linlong;
关于广义Riccati方程的可积条件——与赵临龙先生商榷
2.
The generalized Riccati equation is introduced in a class of uncertain nonlinearly generalized interconnection systems with saturation input to design the decentralized and generalized robust stabilization controllers relevant to such systems.
采用广义Riccati方程,对一类具有输入饱和的不确定非线性广义交联系统,给出了一种分散广义鲁棒镇定控制器的设计。
3.
This paper considers one kind of generalized Riccati equation.
考虑一类广义Riccati方程,通过函数变换,在所给条件下,将这类方程等价地化为变量分离方程,从而得到了该方程可积的三个充分性判据,并给出方程通解的参数表达形式,扩大了Riccati方程的可解性范围。
4) generalized algebraic Riccati equation
广义代数Riccati方程
1.
Study on generalized algebraic Riccati equations and optimal regulators;
广义代数Riccati方程和最优调节器的研究
2.
Comparison theorem for generalized algebraic Riccati equations;
广义代数Riccati方程的一个比较定理
5) generalized Riccati algebraic equation
广义Riccati代数方程
6) ge-neralized projective Riccati equation method
广义投射Riccati方程方法
补充资料:微分方程的差分方程逼近
微分方程的差分方程逼近
approximation of a differential equation by difference equations
微分方程的差分方程通近【app拟。mati.ofa山价犯n-ti习闪姗柱.by山血魂.理equa西姗;即即肠。砚田朋.朋巾卜碑四.别吸.。印冲.旧e朋,pa3I.ecTll目M] 微分方程用关于未知函数在某种网格上的值的代数方程组的逼近,当网格的参数(网络、步长)趋于零时可使得逼近更加精确. 设L(Lu可)是某个微分算子,几(L声。=几,。。任叭,人“凡)是某个有限差分算子(见徽分算子的差分算子通近(aPProximation of a dilferential operator by dif-feren沈。perators”.如果算子L、关于解u逼近算子L,其阶为p,即如果 }}Lh[u]*I}汽=o(hp),那么有限差分式L声、二0(o任凡)称为关于解“对微分方程Lu=O的P阶逼近. 构造有限差分方程L声*=0关于解u逼近微分方程Lu=0的最简单例子是将Lu的表达式中每个导数用相应的有限差分来代替. 例如,方程 _子“.,、血._,_八_一n Lu三书舟+P(x)于+q(x)u=U ~“一dxZr‘~产dxl‘’可用有限差分方程 L‘“‘三生理二丛吐丛二+ h‘ U~丰I一U,_I_ +尸(x们厂竺二兹巴几十,(x功)u朋一o作二阶精度逼近,其中网格几。和几;由点x.“。h组成(m是一整数),“.是函数u*在点x.的值.又,方程 au aZu L“三共牛一斗冬二0, --一ar ax,可用关于光滑解的两种不同的差分近似来逼近: _.月+1_”月气.月上.” 一门、“nt4用“用十l‘“阴l“用一I八 于九‘(撇式格式(exPlie,}seheme))和! “几’l一嗽试,‘l}一翔二,曰衅,‘从 拭’价二一一-一—一了一--一一几,(隐式格式(一mf)liczt scheme)),其中网格D*。和D*:由点(x。,甲=(川入,似)组成,:二rhZ,r二常数,巾和n是整数,。二是函数翻、在网格点(x,,t。)的值.存在这样的有限差分算子L,它对微分算子L的逼近,仅关于方程L。一0的解。特别好,而关于其他函数则差一些.例如,算一子L*L*U。三兴,·卜·夸卫一尹{刁内队引〔其中汀二·。州一随甲‘气))关f任意的光滑函数。(*)是算 广L- d仪 L“一…一甲〔戈,“)Z(工) 办的一阶逼近(_关于八)、而关于方程大u=O的解却是二阶逼近(假定函数:,充分光滑)在利用有限差分方程与。。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条